遗传关联研究中的连锁不平衡提高了语法进化神经网络的性能。

Alison A Motsinger, David M Reif, Theresa J Fanelli, Anna C Davis, Marylyn D Ritchie
{"title":"遗传关联研究中的连锁不平衡提高了语法进化神经网络的性能。","authors":"Alison A Motsinger, David M Reif, Theresa J Fanelli, Anna C Davis, Marylyn D Ritchie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important goals in genetic epidemiology is the identification of genetic factors/features that predict complex diseases. The ubiquitous nature of gene-gene interactions in the underlying etiology of common diseases creates an important analytical challenge, spurring the introduction of novel, computational approaches. One such method is a grammatical evolution neural network (GENN) approach. GENN has been shown to have high power to detect such interactions in simulation studies, but previous studies have ignored an important feature of most genetic data: linkage disequilibrium (LD). LD describes the non-random association of alleles not necessarily on the same chromosome. This results in strong correlation between variables in a dataset, which can complicate analysis. In the current study, data simulations with a range of LD patterns are used to assess the impact of such correlated variables on the performance of GENN. Our results show that not only do patterns of strong LD not decrease the power of GENN to detect genetic associations, they actually increase its power.</p>","PeriodicalId":88962,"journal":{"name":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2007 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092290/pdf/nihms-160137.pdf","citationCount":"0","resultStr":"{\"title\":\"Linkage Disequilibrium in Genetic Association Studies Improves the Performance of Grammatical Evolution Neural Networks.\",\"authors\":\"Alison A Motsinger, David M Reif, Theresa J Fanelli, Anna C Davis, Marylyn D Ritchie\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most important goals in genetic epidemiology is the identification of genetic factors/features that predict complex diseases. The ubiquitous nature of gene-gene interactions in the underlying etiology of common diseases creates an important analytical challenge, spurring the introduction of novel, computational approaches. One such method is a grammatical evolution neural network (GENN) approach. GENN has been shown to have high power to detect such interactions in simulation studies, but previous studies have ignored an important feature of most genetic data: linkage disequilibrium (LD). LD describes the non-random association of alleles not necessarily on the same chromosome. This results in strong correlation between variables in a dataset, which can complicate analysis. In the current study, data simulations with a range of LD patterns are used to assess the impact of such correlated variables on the performance of GENN. Our results show that not only do patterns of strong LD not decrease the power of GENN to detect genetic associations, they actually increase its power.</p>\",\"PeriodicalId\":88962,\"journal\":{\"name\":\"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"2007 \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092290/pdf/nihms-160137.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传流行病学最重要的目标之一是确定预测复杂疾病的遗传因素/特征。在常见疾病的潜在病因学中,基因-基因相互作用的普遍性创造了一个重要的分析挑战,刺激了新的计算方法的引入。其中一种方法是语法进化神经网络(GENN)方法。在模拟研究中,GENN已被证明在检测这种相互作用方面具有很高的能力,但以前的研究忽略了大多数遗传数据的一个重要特征:连锁不平衡(LD)。LD描述了不一定在同一染色体上的等位基因的非随机关联。这导致数据集中变量之间存在很强的相关性,这会使分析变得复杂。在目前的研究中,使用一系列LD模式的数据模拟来评估这些相关变量对GENN性能的影响。我们的研究结果表明,强LD模式不仅不会降低GENN检测遗传关联的能力,反而会增加其能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linkage Disequilibrium in Genetic Association Studies Improves the Performance of Grammatical Evolution Neural Networks.

One of the most important goals in genetic epidemiology is the identification of genetic factors/features that predict complex diseases. The ubiquitous nature of gene-gene interactions in the underlying etiology of common diseases creates an important analytical challenge, spurring the introduction of novel, computational approaches. One such method is a grammatical evolution neural network (GENN) approach. GENN has been shown to have high power to detect such interactions in simulation studies, but previous studies have ignored an important feature of most genetic data: linkage disequilibrium (LD). LD describes the non-random association of alleles not necessarily on the same chromosome. This results in strong correlation between variables in a dataset, which can complicate analysis. In the current study, data simulations with a range of LD patterns are used to assess the impact of such correlated variables on the performance of GENN. Our results show that not only do patterns of strong LD not decrease the power of GENN to detect genetic associations, they actually increase its power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信