{"title":"智能空间的学习设置-广义活动模型。","authors":"Diane J Cook","doi":"10.1109/MIS.2010.112","DOIUrl":null,"url":null,"abstract":"<p><p>The data mining and pervasive computing technologies found in smart homes offer unprecedented opportunities for providing context-aware services, including health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to provide these services, smart environment algorithms need to recognize and track activities that people normally perform as part of their daily routines. However, activity recognition has typically involved gathering and labeling large amounts of data in each setting to learn a model for activities in that setting. We hypothesize that generalized models can be learned for common activities that span multiple environment settings and resident types. We describe our approach to learning these models and demonstrate the approach using eleven CASAS datasets collected in seven environments.</p>","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"2010 99","pages":"1"},"PeriodicalIF":5.6000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MIS.2010.112","citationCount":"425","resultStr":"{\"title\":\"Learning Setting-Generalized Activity Models for Smart Spaces.\",\"authors\":\"Diane J Cook\",\"doi\":\"10.1109/MIS.2010.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The data mining and pervasive computing technologies found in smart homes offer unprecedented opportunities for providing context-aware services, including health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to provide these services, smart environment algorithms need to recognize and track activities that people normally perform as part of their daily routines. However, activity recognition has typically involved gathering and labeling large amounts of data in each setting to learn a model for activities in that setting. We hypothesize that generalized models can be learned for common activities that span multiple environment settings and resident types. We describe our approach to learning these models and demonstrate the approach using eleven CASAS datasets collected in seven environments.</p>\",\"PeriodicalId\":13160,\"journal\":{\"name\":\"IEEE Intelligent Systems\",\"volume\":\"2010 99\",\"pages\":\"1\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/MIS.2010.112\",\"citationCount\":\"425\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MIS.2010.112\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MIS.2010.112","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Setting-Generalized Activity Models for Smart Spaces.
The data mining and pervasive computing technologies found in smart homes offer unprecedented opportunities for providing context-aware services, including health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to provide these services, smart environment algorithms need to recognize and track activities that people normally perform as part of their daily routines. However, activity recognition has typically involved gathering and labeling large amounts of data in each setting to learn a model for activities in that setting. We hypothesize that generalized models can be learned for common activities that span multiple environment settings and resident types. We describe our approach to learning these models and demonstrate the approach using eleven CASAS datasets collected in seven environments.
期刊介绍:
IEEE Intelligent Systems serves users, managers, developers, researchers, and purchasers who are interested in intelligent systems and artificial intelligence, with particular emphasis on applications. Typically they are degreed professionals, with backgrounds in engineering, hard science, or business. The publication emphasizes current practice and experience, together with promising new ideas that are likely to be used in the near future. Sample topic areas for feature articles include knowledge-based systems, intelligent software agents, natural-language processing, technologies for knowledge management, machine learning, data mining, adaptive and intelligent robotics, knowledge-intensive processing on the Web, and social issues relevant to intelligent systems. Also encouraged are application features, covering practice at one or more companies or laboratories; full-length product stories (which require refereeing by at least three reviewers); tutorials; surveys; and case studies. Often issues are theme-based and collect articles around a contemporary topic under the auspices of a Guest Editor working with the EIC.