通过密码子19和20的共突变激活K-RAS是转化的。

Q2 Biochemistry, Genetics and Molecular Biology
Adam Naguib, Catherine H Wilson, David J Adams, Mark J Arends
{"title":"通过密码子19和20的共突变激活K-RAS是转化的。","authors":"Adam Naguib,&nbsp;Catherine H Wilson,&nbsp;David J Adams,&nbsp;Mark J Arends","doi":"10.1186/1750-2187-6-2","DOIUrl":null,"url":null,"abstract":"<p><p> The K-RAS oncogene is widely mutated in human cancers. Activating mutations in K-RAS give rise to constitutive signalling through the MAPK/ERK and PI3K/AKT pathways promoting increased cell division, reduced apoptosis and transformation. The majority of activating mutations in K-RAS are located in codons 12 and 13. In a human colorectal cancer we identified a novel K-RAS co-mutation that altered codons 19 and 20 resulting in transitions at both codons (L19F/T20A) in the same allele. Using focus forming transformation assays in vitro , we showed that co-mutation of L19F/T20A in K-RAS demonstrated intermediate transforming ability that was greater than that of individual L19F and T20A mutants, but less than that of G12D and G12V K-RAS mutants. This demonstrated the synergistic effects of co-mutation of codons 19 and 20 and illustrated that co-mutation of these codons is functionally significant.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-6-2","citationCount":"24","resultStr":"{\"title\":\"Activation of K-RAS by co-mutation of codons 19 and 20 is transforming.\",\"authors\":\"Adam Naguib,&nbsp;Catherine H Wilson,&nbsp;David J Adams,&nbsp;Mark J Arends\",\"doi\":\"10.1186/1750-2187-6-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> The K-RAS oncogene is widely mutated in human cancers. Activating mutations in K-RAS give rise to constitutive signalling through the MAPK/ERK and PI3K/AKT pathways promoting increased cell division, reduced apoptosis and transformation. The majority of activating mutations in K-RAS are located in codons 12 and 13. In a human colorectal cancer we identified a novel K-RAS co-mutation that altered codons 19 and 20 resulting in transitions at both codons (L19F/T20A) in the same allele. Using focus forming transformation assays in vitro , we showed that co-mutation of L19F/T20A in K-RAS demonstrated intermediate transforming ability that was greater than that of individual L19F and T20A mutants, but less than that of G12D and G12V K-RAS mutants. This demonstrated the synergistic effects of co-mutation of codons 19 and 20 and illustrated that co-mutation of these codons is functionally significant.</p>\",\"PeriodicalId\":35051,\"journal\":{\"name\":\"Journal of Molecular Signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1750-2187-6-2\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1750-2187-6-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-6-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 24

摘要

K-RAS癌基因在人类癌症中广泛突变。K-RAS的激活突变通过MAPK/ERK和PI3K/AKT通路产生组成性信号传导,促进细胞分裂增加、细胞凋亡减少和转化。K-RAS的大多数激活突变位于密码子12和13上。在人类结直肠癌中,我们发现了一种新的K-RAS共突变,该突变改变了密码子19和20,导致同一等位基因中两个密码子(L19F/T20A)的转移。通过体外焦点形成转化实验,我们发现K-RAS中L19F/T20A共突变体表现出中间转化能力,高于L19F和T20A突变体个体,但低于G12D和G12V K-RAS突变体。这证明了密码子19和20共突变的协同效应,说明这些密码子的共突变在功能上是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Activation of K-RAS by co-mutation of codons 19 and 20 is transforming.

Activation of K-RAS by co-mutation of codons 19 and 20 is transforming.

Activation of K-RAS by co-mutation of codons 19 and 20 is transforming.

Activation of K-RAS by co-mutation of codons 19 and 20 is transforming.

The K-RAS oncogene is widely mutated in human cancers. Activating mutations in K-RAS give rise to constitutive signalling through the MAPK/ERK and PI3K/AKT pathways promoting increased cell division, reduced apoptosis and transformation. The majority of activating mutations in K-RAS are located in codons 12 and 13. In a human colorectal cancer we identified a novel K-RAS co-mutation that altered codons 19 and 20 resulting in transitions at both codons (L19F/T20A) in the same allele. Using focus forming transformation assays in vitro , we showed that co-mutation of L19F/T20A in K-RAS demonstrated intermediate transforming ability that was greater than that of individual L19F and T20A mutants, but less than that of G12D and G12V K-RAS mutants. This demonstrated the synergistic effects of co-mutation of codons 19 and 20 and illustrated that co-mutation of these codons is functionally significant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Signaling
Journal of Molecular Signaling Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信