利用加权关键字模型改进生物医学问题的信息检索。

Hong Yu, Yong-Gang Cao
{"title":"利用加权关键字模型改进生物医学问题的信息检索。","authors":"Hong Yu,&nbsp;Yong-Gang Cao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Physicians ask many complex questions during the patient encounter. Information retrieval systems that can provide immediate and relevant answers to these questions can be invaluable aids to the practice of evidence-based medicine. In this study, we first automatically identify topic keywords from ad hoc clinical questions with a Condition Random Field model that is trained over thousands of manually annotated clinical questions. We then report on a linear model that assigns query weights based on their automatically identified semantic roles: topic keywords, domain specific terms, and their synonyms. Our evaluation shows that this weighted keyword model improves information retrieval from the Text Retrieval Conference Genomics track data.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2009 ","pages":"143-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using the weighted keyword model to improve information retrieval for answering biomedical questions.\",\"authors\":\"Hong Yu,&nbsp;Yong-Gang Cao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physicians ask many complex questions during the patient encounter. Information retrieval systems that can provide immediate and relevant answers to these questions can be invaluable aids to the practice of evidence-based medicine. In this study, we first automatically identify topic keywords from ad hoc clinical questions with a Condition Random Field model that is trained over thousands of manually annotated clinical questions. We then report on a linear model that assigns query weights based on their automatically identified semantic roles: topic keywords, domain specific terms, and their synonyms. Our evaluation shows that this weighted keyword model improves information retrieval from the Text Retrieval Conference Genomics track data.</p>\",\"PeriodicalId\":89276,\"journal\":{\"name\":\"Summit on translational bioinformatics\",\"volume\":\"2009 \",\"pages\":\"143-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summit on translational bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医生在会诊时问很多复杂的问题。能够对这些问题提供即时和相关答案的信息检索系统,对于循证医学的实践是无价的帮助。在这项研究中,我们首先使用一个条件随机场模型从特定的临床问题中自动识别主题关键词,该模型经过数千个手动注释的临床问题的训练。然后,我们报告了一个线性模型,该模型根据自动识别的语义角色(主题关键字、领域特定术语及其同义词)分配查询权重。我们的评估表明,该加权关键字模型提高了文本检索会议基因组学轨道数据的信息检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using the weighted keyword model to improve information retrieval for answering biomedical questions.

Using the weighted keyword model to improve information retrieval for answering biomedical questions.

Using the weighted keyword model to improve information retrieval for answering biomedical questions.

Using the weighted keyword model to improve information retrieval for answering biomedical questions.

Physicians ask many complex questions during the patient encounter. Information retrieval systems that can provide immediate and relevant answers to these questions can be invaluable aids to the practice of evidence-based medicine. In this study, we first automatically identify topic keywords from ad hoc clinical questions with a Condition Random Field model that is trained over thousands of manually annotated clinical questions. We then report on a linear model that assigns query weights based on their automatically identified semantic roles: topic keywords, domain specific terms, and their synonyms. Our evaluation shows that this weighted keyword model improves information retrieval from the Text Retrieval Conference Genomics track data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信