{"title":"遗传变异间相互作用检测的贝叶斯组合划分。","authors":"Shyam Visweswaran, An-Kwok Ian Wong","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting epistatic (nolinear) interactions among single nucleotide polymorphisms (SNPs) at multiple loci is important in the analysis of genomic data in association studies. We developed a Bayesian combinatorial partitioning (BCP) for detecting such interactions among SNPs that are predictive of disease. When compared with multifactor dimensionality reduction (MDR), a widely used combinatorial partitioning method for detecting interactions, BCP has significantly greater power and is computationally more efficient.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2009 ","pages":"133"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041553/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian combinatorial partitioning for detecting interactions among genetic variants.\",\"authors\":\"Shyam Visweswaran, An-Kwok Ian Wong\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting epistatic (nolinear) interactions among single nucleotide polymorphisms (SNPs) at multiple loci is important in the analysis of genomic data in association studies. We developed a Bayesian combinatorial partitioning (BCP) for detecting such interactions among SNPs that are predictive of disease. When compared with multifactor dimensionality reduction (MDR), a widely used combinatorial partitioning method for detecting interactions, BCP has significantly greater power and is computationally more efficient.</p>\",\"PeriodicalId\":89276,\"journal\":{\"name\":\"Summit on translational bioinformatics\",\"volume\":\"2009 \",\"pages\":\"133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summit on translational bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian combinatorial partitioning for detecting interactions among genetic variants.
Detecting epistatic (nolinear) interactions among single nucleotide polymorphisms (SNPs) at multiple loci is important in the analysis of genomic data in association studies. We developed a Bayesian combinatorial partitioning (BCP) for detecting such interactions among SNPs that are predictive of disease. When compared with multifactor dimensionality reduction (MDR), a widely used combinatorial partitioning method for detecting interactions, BCP has significantly greater power and is computationally more efficient.