基于语料库的UMLS临床研究资格标准语义词典创建方法。

Zhihui Luo, Robert Duffy, Stephen Johnson, Chunhua Weng
{"title":"基于语料库的UMLS临床研究资格标准语义词典创建方法。","authors":"Zhihui Luo,&nbsp;Robert Duffy,&nbsp;Stephen Johnson,&nbsp;Chunhua Weng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a corpus-based approach to creating a semantic lexicon using UMLS knowledge sources. We extracted 10,000 sentences from the eligibility criteria sections of clinical trial summaries contained in ClinicalTrials.gov. The UMLS Metathesaurus and SPECIALIST Lexical Tools were used to extract and normalize UMLS recognizable terms. When annotated with Semantic Network types, the corpus had a lexical ambiguity of 1.57 (=total types for unique lexemes / total unique lexemes) and a word occurrence ambiguity of 1.96 (=total type occurrences / total word occurrences). A set of semantic preference rules was developed and applied to completely eliminate ambiguity in semantic type assignment. The lexicon covered 95.95% UMLS-recognizable terms in our corpus. A total of 20 UMLS semantic types, representing about 17% of all the distinct semantic types assigned to corpus lexemes, covered about 80% of the vocabulary of our corpus.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2010 ","pages":"26-30"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corpus-based Approach to Creating a Semantic Lexicon for Clinical Research Eligibility Criteria from UMLS.\",\"authors\":\"Zhihui Luo,&nbsp;Robert Duffy,&nbsp;Stephen Johnson,&nbsp;Chunhua Weng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe a corpus-based approach to creating a semantic lexicon using UMLS knowledge sources. We extracted 10,000 sentences from the eligibility criteria sections of clinical trial summaries contained in ClinicalTrials.gov. The UMLS Metathesaurus and SPECIALIST Lexical Tools were used to extract and normalize UMLS recognizable terms. When annotated with Semantic Network types, the corpus had a lexical ambiguity of 1.57 (=total types for unique lexemes / total unique lexemes) and a word occurrence ambiguity of 1.96 (=total type occurrences / total word occurrences). A set of semantic preference rules was developed and applied to completely eliminate ambiguity in semantic type assignment. The lexicon covered 95.95% UMLS-recognizable terms in our corpus. A total of 20 UMLS semantic types, representing about 17% of all the distinct semantic types assigned to corpus lexemes, covered about 80% of the vocabulary of our corpus.</p>\",\"PeriodicalId\":89276,\"journal\":{\"name\":\"Summit on translational bioinformatics\",\"volume\":\"2010 \",\"pages\":\"26-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summit on translational bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种基于语料库的方法来使用UMLS知识库创建语义词典。我们从ClinicalTrials.gov网站上的临床试验摘要的资格标准部分提取了10,000个句子。使用UMLS元词典和专业词汇工具对UMLS可识别术语进行提取和规范化。当使用语义网络类型进行标注时,语料库的词汇歧义度为1.57(=唯一词汇的总类型/唯一词汇的总数),单词出现歧义度为1.96(=总类型出现次数/总单词出现次数)。为了彻底消除语义类型分配中的歧义,提出了一套语义偏好规则。该词典涵盖了语料库中95.95%的uml可识别术语。UMLS共有20种语义类型,约占分配给语料库词汇的所有不同语义类型的17%,覆盖了语料库词汇的80%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Corpus-based Approach to Creating a Semantic Lexicon for Clinical Research Eligibility Criteria from UMLS.

Corpus-based Approach to Creating a Semantic Lexicon for Clinical Research Eligibility Criteria from UMLS.

We describe a corpus-based approach to creating a semantic lexicon using UMLS knowledge sources. We extracted 10,000 sentences from the eligibility criteria sections of clinical trial summaries contained in ClinicalTrials.gov. The UMLS Metathesaurus and SPECIALIST Lexical Tools were used to extract and normalize UMLS recognizable terms. When annotated with Semantic Network types, the corpus had a lexical ambiguity of 1.57 (=total types for unique lexemes / total unique lexemes) and a word occurrence ambiguity of 1.96 (=total type occurrences / total word occurrences). A set of semantic preference rules was developed and applied to completely eliminate ambiguity in semantic type assignment. The lexicon covered 95.95% UMLS-recognizable terms in our corpus. A total of 20 UMLS semantic types, representing about 17% of all the distinct semantic types assigned to corpus lexemes, covered about 80% of the vocabulary of our corpus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信