基于上下文特征的急性呼吸道感染文本分类器的假阳性错误分析。

Brett R South, Shuying Shen, Wendy W Chapman, Sylvain Delisle, Matthew H Samore, Adi V Gundlapalli
{"title":"基于上下文特征的急性呼吸道感染文本分类器的假阳性错误分析。","authors":"Brett R South,&nbsp;Shuying Shen,&nbsp;Wendy W Chapman,&nbsp;Sylvain Delisle,&nbsp;Matthew H Samore,&nbsp;Adi V Gundlapalli","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Text classifiers have been used for biosurveillance tasks to identify patients with diseases or conditions of interest. When compared to a clinical reference standard of 280 cases of Acute Respiratory Infection (ARI), a text classifier consisting of simple rules and NegEx plus string matching for specific concepts of interest produced 569 (4%) false positive (FP) cases. Using instance level manual annotation we estimate the prevalence of contextual attributes and error types leading to FP cases. Errors were due to (1) Deletion errors from abbreviations, spelling mistakes and missing synonyms (57%); (2) Insertion errors from templated document structures such as check boxes, and lists of signs and symptoms (36%) and; (3) Substitution errors from irrelevant concepts and alternate meanings for the same word (6%). We demonstrate that specific concept attributes contribute to false positive cases. These results will inform modifications and adaptations to improve text classifier performance.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2010 ","pages":"56-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.\",\"authors\":\"Brett R South,&nbsp;Shuying Shen,&nbsp;Wendy W Chapman,&nbsp;Sylvain Delisle,&nbsp;Matthew H Samore,&nbsp;Adi V Gundlapalli\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Text classifiers have been used for biosurveillance tasks to identify patients with diseases or conditions of interest. When compared to a clinical reference standard of 280 cases of Acute Respiratory Infection (ARI), a text classifier consisting of simple rules and NegEx plus string matching for specific concepts of interest produced 569 (4%) false positive (FP) cases. Using instance level manual annotation we estimate the prevalence of contextual attributes and error types leading to FP cases. Errors were due to (1) Deletion errors from abbreviations, spelling mistakes and missing synonyms (57%); (2) Insertion errors from templated document structures such as check boxes, and lists of signs and symptoms (36%) and; (3) Substitution errors from irrelevant concepts and alternate meanings for the same word (6%). We demonstrate that specific concept attributes contribute to false positive cases. These results will inform modifications and adaptations to improve text classifier performance.</p>\",\"PeriodicalId\":89276,\"journal\":{\"name\":\"Summit on translational bioinformatics\",\"volume\":\"2010 \",\"pages\":\"56-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summit on translational bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本分类器已用于生物监测任务,以识别患者的疾病或感兴趣的条件。与280例急性呼吸道感染(ARI)的临床参考标准相比,由简单规则和NegEx加上特定感兴趣概念的字符串匹配组成的文本分类器产生了569例(4%)假阳性(FP)病例。使用实例级手动注释,我们估计导致FP案例的上下文属性和错误类型的流行程度。(1)缩略语删除错误、拼写错误和同义词缺失错误(57%);(2)来自模板文档结构的插入错误,如复选框和体征和症状列表(36%);(3)不相关概念的替换错误和同一词的替代意思(6%)。我们证明了特定的概念属性有助于假阳性情况。这些结果将告知修改和调整,以提高文本分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.

Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.

Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.

Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.

Text classifiers have been used for biosurveillance tasks to identify patients with diseases or conditions of interest. When compared to a clinical reference standard of 280 cases of Acute Respiratory Infection (ARI), a text classifier consisting of simple rules and NegEx plus string matching for specific concepts of interest produced 569 (4%) false positive (FP) cases. Using instance level manual annotation we estimate the prevalence of contextual attributes and error types leading to FP cases. Errors were due to (1) Deletion errors from abbreviations, spelling mistakes and missing synonyms (57%); (2) Insertion errors from templated document structures such as check boxes, and lists of signs and symptoms (36%) and; (3) Substitution errors from irrelevant concepts and alternate meanings for the same word (6%). We demonstrate that specific concept attributes contribute to false positive cases. These results will inform modifications and adaptations to improve text classifier performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信