使用面部动作自动检测疼痛。

Patrick Lucey, Jeffrey Cohn, Simon Lucey, Iain Matthews, Sridha Sridharan, Kenneth M Prkachin
{"title":"使用面部动作自动检测疼痛。","authors":"Patrick Lucey,&nbsp;Jeffrey Cohn,&nbsp;Simon Lucey,&nbsp;Iain Matthews,&nbsp;Sridha Sridharan,&nbsp;Kenneth M Prkachin","doi":"10.1109/ACII.2009.5349321","DOIUrl":null,"url":null,"abstract":"<p><p>Pain is generally measured by patient self-report, normally via verbal communication. However, if the patient is a child or has limited ability to communicate (i.e. the mute, mentally impaired, or patients having assisted breathing) self-report may not be a viable measurement. In addition, these self-report measures only relate to the maximum pain level experienced during a sequence so a frame-by-frame measure is currently not obtainable. Using image data from patients with rotator-cuff injuries, in this paper we describe an AAM-based automatic system which can detect pain on a frame-by-frame level. We do this two ways: directly (straight from the facial features); and indirectly (through the fusion of individual AU detectors). From our results, we show that the latter method achieves the optimal results as most discriminant features from each AU detector (i.e. shape or appearance) are used.</p>","PeriodicalId":89154,"journal":{"name":"International Conference on Affective Computing and Intelligent Interaction and workshops : [proceedings]. ACII (Conference)","volume":"2009 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACII.2009.5349321","citationCount":"97","resultStr":"{\"title\":\"Automatically Detecting Pain Using Facial Actions.\",\"authors\":\"Patrick Lucey,&nbsp;Jeffrey Cohn,&nbsp;Simon Lucey,&nbsp;Iain Matthews,&nbsp;Sridha Sridharan,&nbsp;Kenneth M Prkachin\",\"doi\":\"10.1109/ACII.2009.5349321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pain is generally measured by patient self-report, normally via verbal communication. However, if the patient is a child or has limited ability to communicate (i.e. the mute, mentally impaired, or patients having assisted breathing) self-report may not be a viable measurement. In addition, these self-report measures only relate to the maximum pain level experienced during a sequence so a frame-by-frame measure is currently not obtainable. Using image data from patients with rotator-cuff injuries, in this paper we describe an AAM-based automatic system which can detect pain on a frame-by-frame level. We do this two ways: directly (straight from the facial features); and indirectly (through the fusion of individual AU detectors). From our results, we show that the latter method achieves the optimal results as most discriminant features from each AU detector (i.e. shape or appearance) are used.</p>\",\"PeriodicalId\":89154,\"journal\":{\"name\":\"International Conference on Affective Computing and Intelligent Interaction and workshops : [proceedings]. ACII (Conference)\",\"volume\":\"2009 \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ACII.2009.5349321\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Affective Computing and Intelligent Interaction and workshops : [proceedings]. ACII (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2009.5349321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Affective Computing and Intelligent Interaction and workshops : [proceedings]. ACII (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2009.5349321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

疼痛通常由患者自我报告来测量,通常通过口头交流。然而,如果患者是儿童或沟通能力有限(即哑巴、智障或需要辅助呼吸的患者),自我报告可能不可行。此外,这些自我报告测量只涉及在一个序列中所经历的最大疼痛水平,因此目前无法获得逐帧测量。利用肩袖损伤患者的图像数据,本文描述了一种基于aam的自动系统,该系统可以逐帧检测疼痛。我们有两种方法:直接(直接从面部特征);间接地(通过单个AU探测器的融合)。从我们的结果中,我们表明后一种方法可以获得最佳结果,因为使用了每个AU检测器的大多数判别特征(即形状或外观)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatically Detecting Pain Using Facial Actions.

Automatically Detecting Pain Using Facial Actions.

Automatically Detecting Pain Using Facial Actions.

Automatically Detecting Pain Using Facial Actions.

Pain is generally measured by patient self-report, normally via verbal communication. However, if the patient is a child or has limited ability to communicate (i.e. the mute, mentally impaired, or patients having assisted breathing) self-report may not be a viable measurement. In addition, these self-report measures only relate to the maximum pain level experienced during a sequence so a frame-by-frame measure is currently not obtainable. Using image data from patients with rotator-cuff injuries, in this paper we describe an AAM-based automatic system which can detect pain on a frame-by-frame level. We do this two ways: directly (straight from the facial features); and indirectly (through the fusion of individual AU detectors). From our results, we show that the latter method achieves the optimal results as most discriminant features from each AU detector (i.e. shape or appearance) are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信