多参数时间序列数据库中基于相似度的搜索。

Lh Lehman, M Saeed, Gb Moody, Rg Mark
{"title":"多参数时间序列数据库中基于相似度的搜索。","authors":"Lh Lehman, M Saeed, Gb Moody, Rg Mark","doi":"10.1109/CIC.2008.4749126","DOIUrl":null,"url":null,"abstract":"<p><p>We present a similarity-based searching and pattern matching algorithm that identifies time series data with similar temporal dynamics in large-scale, multi-parameter databases. We represent time series segments by feature vectors that reflect the dynamical patterns of single and multi-dimensional physiological time series. Features include regression slopes at varying time scales, maximum transient changes, auto-correlation coefficients of individual signals, and cross correlations among multiple signals. We model the dynamical patterns with a Gaussian mixture model (GMM) learned with the Expectation Maximization algorithm, and compute similarity between segments as Mahalanobis distances. We evaluate the use of our algorithm in three applications: search-by-example based data retrieval, event classification, and forecasting, using synthetic and real physiologic time series from a variety of sources.</p>","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"35 4749126","pages":"653-656"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004130/pdf/nihms126907.pdf","citationCount":"0","resultStr":"{\"title\":\"Similarity-Based Searching in Multi-Parameter Time Series Databases.\",\"authors\":\"Lh Lehman, M Saeed, Gb Moody, Rg Mark\",\"doi\":\"10.1109/CIC.2008.4749126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a similarity-based searching and pattern matching algorithm that identifies time series data with similar temporal dynamics in large-scale, multi-parameter databases. We represent time series segments by feature vectors that reflect the dynamical patterns of single and multi-dimensional physiological time series. Features include regression slopes at varying time scales, maximum transient changes, auto-correlation coefficients of individual signals, and cross correlations among multiple signals. We model the dynamical patterns with a Gaussian mixture model (GMM) learned with the Expectation Maximization algorithm, and compute similarity between segments as Mahalanobis distances. We evaluate the use of our algorithm in three applications: search-by-example based data retrieval, event classification, and forecasting, using synthetic and real physiologic time series from a variety of sources.</p>\",\"PeriodicalId\":80984,\"journal\":{\"name\":\"Computers in cardiology\",\"volume\":\"35 4749126\",\"pages\":\"653-656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004130/pdf/nihms126907.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2008.4749126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2008.4749126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于相似性的搜索和模式匹配算法,该算法可以识别大规模多参数数据库中具有相似时间动态的时间序列数据。我们用反映单维度和多维生理时间序列动态模式的特征向量来表示时间序列片段。特征包括不同时间尺度下的回归斜率、最大瞬态变化、单个信号的自相关系数以及多个信号之间的相互关系。我们使用期望最大化算法学习的高斯混合模型(GMM)对动态模式进行建模,并以马氏距离计算路段之间的相似度。我们评估了我们的算法在三个应用中的使用:基于实例搜索的数据检索,事件分类和预测,使用来自各种来源的合成和真实生理时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity-Based Searching in Multi-Parameter Time Series Databases.

We present a similarity-based searching and pattern matching algorithm that identifies time series data with similar temporal dynamics in large-scale, multi-parameter databases. We represent time series segments by feature vectors that reflect the dynamical patterns of single and multi-dimensional physiological time series. Features include regression slopes at varying time scales, maximum transient changes, auto-correlation coefficients of individual signals, and cross correlations among multiple signals. We model the dynamical patterns with a Gaussian mixture model (GMM) learned with the Expectation Maximization algorithm, and compute similarity between segments as Mahalanobis distances. We evaluate the use of our algorithm in three applications: search-by-example based data retrieval, event classification, and forecasting, using synthetic and real physiologic time series from a variety of sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信