Chris Foster , Samuel Shaw , Thomas S. Neill , Nick Bryan , Nick Sherriff , Scott Harrison , Louise S. Natrajan , Bruce Rigby , Katherine Morris
{"title":"研究水滑石与U(IV)纳米颗粒之间的相互作用","authors":"Chris Foster , Samuel Shaw , Thomas S. Neill , Nick Bryan , Nick Sherriff , Scott Harrison , Louise S. Natrajan , Bruce Rigby , Katherine Morris","doi":"10.1016/j.jnucmat.2023.154482","DOIUrl":null,"url":null,"abstract":"<div><p>In the UK, the decommissioning of legacy spent fuel storage facilities at the Sellafield nuclear facility requires the retrieval of radioactive sludge resulting from Magnox fuel corrosion. However, sludge retrievals may enhance uranium mobility including via sorption of radionuclide nanoparticles onto colloidal phases such as hydrotalcite (Mg<sub>4</sub>Al<sub>2</sub>(OH)<sub>16</sub>(CO<sub>3</sub>).4H<sub>2</sub>O). Hydrotalcite is a Mg-Al layered double hydroxide (LDH) which is a corrosion product of Magnox fuel cladding. Currently, there are a paucity of studies examining interactions between actinide nanoparticles and LDH phases such as hydrotalcite. Here, a multi-technique approach was used to investigate the interactions between colloidal hydrotalcite and three different forms of nanoparticulate U(IV): nanoparticulate uraninite (UO<sub>2</sub>); nanoparticulate UO<sub>2</sub> reacted with silica (UO<sub>2</sub>-Si); and U(IV)-Si-coprecipitate under anoxic, neutral-to-alkaline conditions. Ultrafiltration and zeta potential analyses indicated that for UO<sub>2</sub> and UO<sub>2</sub>-Si nanoparticulate phases, sorption to colloidal hydrotalcite was limited due to rapidly settling UO<sub>2</sub> and UO<sub>2</sub>-Si aggregates (>450 nm). By contrast, ultrafiltration and zeta potential analyses confirmed the U(IV)-Si-coprecipitate nanoparticle phase showed significantly higher sorption to colloidal hydrotalcite. This was due to the increased colloidal stability of intrinsic U(IV)-silicate nanoparticles which in turn promoted increased sorption to hydrotalcite. TEM imaging showed some evidence for smaller UO<sub>2</sub> and UO<sub>2</sub>-Si aggregates (<20 nm) sorbed to colloidal hydrotalcite. Similar behaviour was observed in TEM images of authentic pond effluent samples from Sellafield, providing confidence that the model laboratory experiments provided a bridge to the highly radioactive spent nuclear fuel pond interactions. This study highlights the potential for U(IV) nanoparticles to form a new type of colloid-colloid interaction with hydrotalcite, especially when silica is present. This further informs predictions of U(IV) (and An(IV)) behaviour in the legacy pond and silo environments, as well as in environmental scenarios where LDH mineral phases and silica are present (e.g. in geological disposal of radioactive waste).</p></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"582 ","pages":"Article 154482"},"PeriodicalIF":2.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the interactions between hydrotalcite and U(IV) nanoparticulates\",\"authors\":\"Chris Foster , Samuel Shaw , Thomas S. Neill , Nick Bryan , Nick Sherriff , Scott Harrison , Louise S. Natrajan , Bruce Rigby , Katherine Morris\",\"doi\":\"10.1016/j.jnucmat.2023.154482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the UK, the decommissioning of legacy spent fuel storage facilities at the Sellafield nuclear facility requires the retrieval of radioactive sludge resulting from Magnox fuel corrosion. However, sludge retrievals may enhance uranium mobility including via sorption of radionuclide nanoparticles onto colloidal phases such as hydrotalcite (Mg<sub>4</sub>Al<sub>2</sub>(OH)<sub>16</sub>(CO<sub>3</sub>).4H<sub>2</sub>O). Hydrotalcite is a Mg-Al layered double hydroxide (LDH) which is a corrosion product of Magnox fuel cladding. Currently, there are a paucity of studies examining interactions between actinide nanoparticles and LDH phases such as hydrotalcite. Here, a multi-technique approach was used to investigate the interactions between colloidal hydrotalcite and three different forms of nanoparticulate U(IV): nanoparticulate uraninite (UO<sub>2</sub>); nanoparticulate UO<sub>2</sub> reacted with silica (UO<sub>2</sub>-Si); and U(IV)-Si-coprecipitate under anoxic, neutral-to-alkaline conditions. Ultrafiltration and zeta potential analyses indicated that for UO<sub>2</sub> and UO<sub>2</sub>-Si nanoparticulate phases, sorption to colloidal hydrotalcite was limited due to rapidly settling UO<sub>2</sub> and UO<sub>2</sub>-Si aggregates (>450 nm). By contrast, ultrafiltration and zeta potential analyses confirmed the U(IV)-Si-coprecipitate nanoparticle phase showed significantly higher sorption to colloidal hydrotalcite. This was due to the increased colloidal stability of intrinsic U(IV)-silicate nanoparticles which in turn promoted increased sorption to hydrotalcite. TEM imaging showed some evidence for smaller UO<sub>2</sub> and UO<sub>2</sub>-Si aggregates (<20 nm) sorbed to colloidal hydrotalcite. Similar behaviour was observed in TEM images of authentic pond effluent samples from Sellafield, providing confidence that the model laboratory experiments provided a bridge to the highly radioactive spent nuclear fuel pond interactions. This study highlights the potential for U(IV) nanoparticles to form a new type of colloid-colloid interaction with hydrotalcite, especially when silica is present. This further informs predictions of U(IV) (and An(IV)) behaviour in the legacy pond and silo environments, as well as in environmental scenarios where LDH mineral phases and silica are present (e.g. in geological disposal of radioactive waste).</p></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"582 \",\"pages\":\"Article 154482\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311523002490\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311523002490","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the interactions between hydrotalcite and U(IV) nanoparticulates
In the UK, the decommissioning of legacy spent fuel storage facilities at the Sellafield nuclear facility requires the retrieval of radioactive sludge resulting from Magnox fuel corrosion. However, sludge retrievals may enhance uranium mobility including via sorption of radionuclide nanoparticles onto colloidal phases such as hydrotalcite (Mg4Al2(OH)16(CO3).4H2O). Hydrotalcite is a Mg-Al layered double hydroxide (LDH) which is a corrosion product of Magnox fuel cladding. Currently, there are a paucity of studies examining interactions between actinide nanoparticles and LDH phases such as hydrotalcite. Here, a multi-technique approach was used to investigate the interactions between colloidal hydrotalcite and three different forms of nanoparticulate U(IV): nanoparticulate uraninite (UO2); nanoparticulate UO2 reacted with silica (UO2-Si); and U(IV)-Si-coprecipitate under anoxic, neutral-to-alkaline conditions. Ultrafiltration and zeta potential analyses indicated that for UO2 and UO2-Si nanoparticulate phases, sorption to colloidal hydrotalcite was limited due to rapidly settling UO2 and UO2-Si aggregates (>450 nm). By contrast, ultrafiltration and zeta potential analyses confirmed the U(IV)-Si-coprecipitate nanoparticle phase showed significantly higher sorption to colloidal hydrotalcite. This was due to the increased colloidal stability of intrinsic U(IV)-silicate nanoparticles which in turn promoted increased sorption to hydrotalcite. TEM imaging showed some evidence for smaller UO2 and UO2-Si aggregates (<20 nm) sorbed to colloidal hydrotalcite. Similar behaviour was observed in TEM images of authentic pond effluent samples from Sellafield, providing confidence that the model laboratory experiments provided a bridge to the highly radioactive spent nuclear fuel pond interactions. This study highlights the potential for U(IV) nanoparticles to form a new type of colloid-colloid interaction with hydrotalcite, especially when silica is present. This further informs predictions of U(IV) (and An(IV)) behaviour in the legacy pond and silo environments, as well as in environmental scenarios where LDH mineral phases and silica are present (e.g. in geological disposal of radioactive waste).
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.