{"title":"智障患者的组蛋白和DNA修饰。","authors":"Shigeki Iwase, Yang Shi","doi":"10.1007/978-3-7643-8989-5_8","DOIUrl":null,"url":null,"abstract":"<p><p>Mental retardation (MR), which affects 1-3% of the total population, refers to a pathological condition whereby the affected individuals suffer from cognitive impairment, which is diagnosed by a low intelligence quotient (IQ) (< 70). Over the years, human genetic studies identified a plethora of candidate genes causing MR, but mechanisms by which these candidates regulate cognitive function remain poorly understood. While the functions of MR genes range from cell signaling and gene expression to synaptic plasticity, there is growing evidence supporting a critical role for epigenetic and chromatin regulatory proteins in MR. Excitingly, recent molecular and genetic studies suggest the possibility of improving cognitive functions via modulation of epigenetic regulators, highlighting a potentially new avenue for therapeutic intervention. In this review, we discuss recent studies on epigenetic regulation in MR and explore the concept of epigenetic therapy for MR.</p>","PeriodicalId":20603,"journal":{"name":"Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques","volume":"67 ","pages":"147-73"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-7643-8989-5_8","citationCount":"17","resultStr":"{\"title\":\"Histone and DNA modifications in mental retardation.\",\"authors\":\"Shigeki Iwase, Yang Shi\",\"doi\":\"10.1007/978-3-7643-8989-5_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mental retardation (MR), which affects 1-3% of the total population, refers to a pathological condition whereby the affected individuals suffer from cognitive impairment, which is diagnosed by a low intelligence quotient (IQ) (< 70). Over the years, human genetic studies identified a plethora of candidate genes causing MR, but mechanisms by which these candidates regulate cognitive function remain poorly understood. While the functions of MR genes range from cell signaling and gene expression to synaptic plasticity, there is growing evidence supporting a critical role for epigenetic and chromatin regulatory proteins in MR. Excitingly, recent molecular and genetic studies suggest the possibility of improving cognitive functions via modulation of epigenetic regulators, highlighting a potentially new avenue for therapeutic intervention. In this review, we discuss recent studies on epigenetic regulation in MR and explore the concept of epigenetic therapy for MR.</p>\",\"PeriodicalId\":20603,\"journal\":{\"name\":\"Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques\",\"volume\":\"67 \",\"pages\":\"147-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-7643-8989-5_8\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-7643-8989-5_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-7643-8989-5_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Histone and DNA modifications in mental retardation.
Mental retardation (MR), which affects 1-3% of the total population, refers to a pathological condition whereby the affected individuals suffer from cognitive impairment, which is diagnosed by a low intelligence quotient (IQ) (< 70). Over the years, human genetic studies identified a plethora of candidate genes causing MR, but mechanisms by which these candidates regulate cognitive function remain poorly understood. While the functions of MR genes range from cell signaling and gene expression to synaptic plasticity, there is growing evidence supporting a critical role for epigenetic and chromatin regulatory proteins in MR. Excitingly, recent molecular and genetic studies suggest the possibility of improving cognitive functions via modulation of epigenetic regulators, highlighting a potentially new avenue for therapeutic intervention. In this review, we discuss recent studies on epigenetic regulation in MR and explore the concept of epigenetic therapy for MR.