{"title":"钙代谢紊乱。","authors":"John F O'Toole","doi":"10.1159/000320884","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic contribution to calcium metabolism is well recognized. Many of the proteins that contribute to calcium homeostasis through intestinal absorption, bone deposition and resorption, renal reabsorption and the molecules regulating these processes have been identified. Mutations in many of the genes coding for these proteins have been identified and often have clear clinical phenotypes. These mutations are generally rare with large effect sizes and a high degree of penetrance. As monogenetic diseases, they have a mendelian inheritance pattern and have been identified with traditional family-based linkage studies. A great deal of progress has been made in the understanding of the physiology of calcium metabolism; however, it remains an evolving field. The identification of the monogenetic etiology of disease has contributed greatly to our understanding of calcium handling and homeostasis. Transgenic animal models of these diseases continue to offer new insights into the mechanisms of calcium metabolism and its regulation. The purpose of this review is to briefly outline calcium metabolism focusing on the mechanisms of intestinal absorption and renal reabsorption as a framework to review the monogenic causes of dysregulated calcium metabolism.</p>","PeriodicalId":18996,"journal":{"name":"Nephron Physiology","volume":"118 1","pages":"p22-7"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000320884","citationCount":"4","resultStr":"{\"title\":\"Disorders of calcium metabolism.\",\"authors\":\"John F O'Toole\",\"doi\":\"10.1159/000320884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genetic contribution to calcium metabolism is well recognized. Many of the proteins that contribute to calcium homeostasis through intestinal absorption, bone deposition and resorption, renal reabsorption and the molecules regulating these processes have been identified. Mutations in many of the genes coding for these proteins have been identified and often have clear clinical phenotypes. These mutations are generally rare with large effect sizes and a high degree of penetrance. As monogenetic diseases, they have a mendelian inheritance pattern and have been identified with traditional family-based linkage studies. A great deal of progress has been made in the understanding of the physiology of calcium metabolism; however, it remains an evolving field. The identification of the monogenetic etiology of disease has contributed greatly to our understanding of calcium handling and homeostasis. Transgenic animal models of these diseases continue to offer new insights into the mechanisms of calcium metabolism and its regulation. The purpose of this review is to briefly outline calcium metabolism focusing on the mechanisms of intestinal absorption and renal reabsorption as a framework to review the monogenic causes of dysregulated calcium metabolism.</p>\",\"PeriodicalId\":18996,\"journal\":{\"name\":\"Nephron Physiology\",\"volume\":\"118 1\",\"pages\":\"p22-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000320884\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000320884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000320884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/11/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The genetic contribution to calcium metabolism is well recognized. Many of the proteins that contribute to calcium homeostasis through intestinal absorption, bone deposition and resorption, renal reabsorption and the molecules regulating these processes have been identified. Mutations in many of the genes coding for these proteins have been identified and often have clear clinical phenotypes. These mutations are generally rare with large effect sizes and a high degree of penetrance. As monogenetic diseases, they have a mendelian inheritance pattern and have been identified with traditional family-based linkage studies. A great deal of progress has been made in the understanding of the physiology of calcium metabolism; however, it remains an evolving field. The identification of the monogenetic etiology of disease has contributed greatly to our understanding of calcium handling and homeostasis. Transgenic animal models of these diseases continue to offer new insights into the mechanisms of calcium metabolism and its regulation. The purpose of this review is to briefly outline calcium metabolism focusing on the mechanisms of intestinal absorption and renal reabsorption as a framework to review the monogenic causes of dysregulated calcium metabolism.