远曲小管中NaCl运输的遗传障碍。

Nephron Physiology Pub Date : 2011-01-01 Epub Date: 2010-11-11 DOI:10.1159/000320883
R Tyler Miller
{"title":"远曲小管中NaCl运输的遗传障碍。","authors":"R Tyler Miller","doi":"10.1159/000320883","DOIUrl":null,"url":null,"abstract":"<p><p>The distal convoluted tubule (DCT) reabsorbs 5-10% of filtered Na, and is an important site for regulation of Na balance. Additionally, the amount and composition of the tubular fluid that leaves the DCT affects H and K secretion in more distal nephrin segments. Mutations in five genes whose products are expressed in the DCT demonstrate these points and help to define the mechanisms by which the DCT contributes to control of electrolyte balance and volume. Loss of function mutations in the apical thiazide-sensitive NaCl cotransporter and the basolateral K channel Kir4.1, and activating mutations in the Ca-sensing receptor cause a phenotypically similar salt wasting syndrome. Mutation in two recently identified kinases, WNK1 and WNK4 cause a salt-retaining syndrome through increased apical expression of NaCl cotransporter. Recent studies indicate that these genes are important not only for understanding the physiology of the distal nephron, but that they and others may also contribute to blood pressure variation in the general population.</p>","PeriodicalId":18996,"journal":{"name":"Nephron Physiology","volume":"118 1","pages":"p15-21"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000320883","citationCount":"3","resultStr":"{\"title\":\"Genetic disorders of NaCl transport in the distal convoluted tubule.\",\"authors\":\"R Tyler Miller\",\"doi\":\"10.1159/000320883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distal convoluted tubule (DCT) reabsorbs 5-10% of filtered Na, and is an important site for regulation of Na balance. Additionally, the amount and composition of the tubular fluid that leaves the DCT affects H and K secretion in more distal nephrin segments. Mutations in five genes whose products are expressed in the DCT demonstrate these points and help to define the mechanisms by which the DCT contributes to control of electrolyte balance and volume. Loss of function mutations in the apical thiazide-sensitive NaCl cotransporter and the basolateral K channel Kir4.1, and activating mutations in the Ca-sensing receptor cause a phenotypically similar salt wasting syndrome. Mutation in two recently identified kinases, WNK1 and WNK4 cause a salt-retaining syndrome through increased apical expression of NaCl cotransporter. Recent studies indicate that these genes are important not only for understanding the physiology of the distal nephron, but that they and others may also contribute to blood pressure variation in the general population.</p>\",\"PeriodicalId\":18996,\"journal\":{\"name\":\"Nephron Physiology\",\"volume\":\"118 1\",\"pages\":\"p15-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000320883\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000320883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000320883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/11/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

远曲小管(DCT)重吸收5-10%的滤过钠,是调节钠平衡的重要部位。此外,离开DCT的管状液的数量和成分影响更远端肾素段的H和K分泌。在DCT中表达产物的五个基因的突变证明了这些观点,并有助于确定DCT控制电解质平衡和体积的机制。顶端噻嗪类敏感的NaCl共转运体和基底外侧K通道Kir4.1的功能突变丧失,以及钙敏感受体的激活突变,导致表型相似的盐消耗综合征。最近发现的两种激酶WNK1和WNK4的突变通过增加NaCl共转运体的顶端表达引起盐潴留综合征。最近的研究表明,这些基因不仅对理解远端肾元的生理学很重要,而且它们和其他基因也可能对普通人群的血压变化有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic disorders of NaCl transport in the distal convoluted tubule.

The distal convoluted tubule (DCT) reabsorbs 5-10% of filtered Na, and is an important site for regulation of Na balance. Additionally, the amount and composition of the tubular fluid that leaves the DCT affects H and K secretion in more distal nephrin segments. Mutations in five genes whose products are expressed in the DCT demonstrate these points and help to define the mechanisms by which the DCT contributes to control of electrolyte balance and volume. Loss of function mutations in the apical thiazide-sensitive NaCl cotransporter and the basolateral K channel Kir4.1, and activating mutations in the Ca-sensing receptor cause a phenotypically similar salt wasting syndrome. Mutation in two recently identified kinases, WNK1 and WNK4 cause a salt-retaining syndrome through increased apical expression of NaCl cotransporter. Recent studies indicate that these genes are important not only for understanding the physiology of the distal nephron, but that they and others may also contribute to blood pressure variation in the general population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nephron Physiology
Nephron Physiology 医学-泌尿学与肾脏学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信