Lúcia H M L M Santos, A N Araújo, Boaventura Reis, M C B S M Montenegro
{"title":"多换流化学发光检测系统的研制用于药物中庆大霉素的定量。","authors":"Lúcia H M L M Santos, A N Araújo, Boaventura Reis, M C B S M Montenegro","doi":"10.1155/2010/913207","DOIUrl":null,"url":null,"abstract":"<p><p>A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 μg mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.</p>","PeriodicalId":15248,"journal":{"name":"Journal of Automated Methods & Management in Chemistry","volume":"2010 ","pages":"913207"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2010/913207","citationCount":"9","resultStr":"{\"title\":\"Development of a multicommutated flow system with chemiluminometric detection for quantification of gentamicin in pharmaceuticals.\",\"authors\":\"Lúcia H M L M Santos, A N Araújo, Boaventura Reis, M C B S M Montenegro\",\"doi\":\"10.1155/2010/913207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 μg mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.</p>\",\"PeriodicalId\":15248,\"journal\":{\"name\":\"Journal of Automated Methods & Management in Chemistry\",\"volume\":\"2010 \",\"pages\":\"913207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2010/913207\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automated Methods & Management in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/913207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/10/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automated Methods & Management in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/913207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/10/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a multicommutated flow system with chemiluminometric detection for quantification of gentamicin in pharmaceuticals.
A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 μg mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.