{"title":"信号质量对6种心输出量估计器的影响。","authors":"T Chen, Gd Clifford, Rg Mark","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of signal quality on the accuracy of cardiac output (CO) estimation from arterial blood pressure (ABP) was evaluated using data from the MIMIC II database. Thermodilution CO (TCO) was the gold standard. A total of 121 records with 1,497 TCO measurements were used. Six lumped-parameter and systolic area CO estimators were tested, using ABP features and a robust heart rate (HR) estimate. Signal quality indices for ABP and HR were calculated using previously described metrics. For retrospective analysis, results showed that the Liljestrand method yielded the lowest error for all levels of signal quality. Increasing signal quality decreased error and only marginally reduced the amount of available data, as a signal quality level of 90% preserved sufficient data for almost continuous CO estimation. At the recommended signal quality thresholds, the lowest gross root mean square normalized error (RMSNE) was found to be 15.4% (or 0.74 L/min) and average RMSNE was 13.7% (0.71 L/min).</p>","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"2009 36","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926988/pdf/nihms-225765.pdf","citationCount":"0","resultStr":"{\"title\":\"The Effect of Signal Quality on Six Cardiac Output Estimators.\",\"authors\":\"T Chen, Gd Clifford, Rg Mark\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of signal quality on the accuracy of cardiac output (CO) estimation from arterial blood pressure (ABP) was evaluated using data from the MIMIC II database. Thermodilution CO (TCO) was the gold standard. A total of 121 records with 1,497 TCO measurements were used. Six lumped-parameter and systolic area CO estimators were tested, using ABP features and a robust heart rate (HR) estimate. Signal quality indices for ABP and HR were calculated using previously described metrics. For retrospective analysis, results showed that the Liljestrand method yielded the lowest error for all levels of signal quality. Increasing signal quality decreased error and only marginally reduced the amount of available data, as a signal quality level of 90% preserved sufficient data for almost continuous CO estimation. At the recommended signal quality thresholds, the lowest gross root mean square normalized error (RMSNE) was found to be 15.4% (or 0.74 L/min) and average RMSNE was 13.7% (0.71 L/min).</p>\",\"PeriodicalId\":80984,\"journal\":{\"name\":\"Computers in cardiology\",\"volume\":\"2009 36\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926988/pdf/nihms-225765.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Signal Quality on Six Cardiac Output Estimators.
The effect of signal quality on the accuracy of cardiac output (CO) estimation from arterial blood pressure (ABP) was evaluated using data from the MIMIC II database. Thermodilution CO (TCO) was the gold standard. A total of 121 records with 1,497 TCO measurements were used. Six lumped-parameter and systolic area CO estimators were tested, using ABP features and a robust heart rate (HR) estimate. Signal quality indices for ABP and HR were calculated using previously described metrics. For retrospective analysis, results showed that the Liljestrand method yielded the lowest error for all levels of signal quality. Increasing signal quality decreased error and only marginally reduced the amount of available data, as a signal quality level of 90% preserved sufficient data for almost continuous CO estimation. At the recommended signal quality thresholds, the lowest gross root mean square normalized error (RMSNE) was found to be 15.4% (or 0.74 L/min) and average RMSNE was 13.7% (0.71 L/min).