用于心血管药物研究和开发的灵长类动物模型。

You-Tang Shen
{"title":"用于心血管药物研究和开发的灵长类动物模型。","authors":"You-Tang Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>One of the primary impediments to successful drug R&D is the frequent failure of successfully translating positive results obtained in animal models to human disease. To a large degree, this discrepancy is secondary to the substantial biological differences between species. Non-human primate models have the advantage of significant physiological, metabolic, biochemical and genetic similarity to humans. Despite this advantage, there has been a relative paucity of non-human primate models used in the study of disease states that currently underlie the most common causes of morbidity and mortality, such as chronic myocardial ischemia leading to heart failure. This review describes a primate model of heart failure that closely mimics the cardiomyopathic process observed in humans. The primary advantage of this non-human primate model is that, unlike existing heart failure models, it allows for continuous study during progressive stages of heart failure, including myocardial ischemia, progressive left ventricular remodeling and end-stage congestive heart failure. In addition to this model of heart failure, other non-human primate models for cardiovascular drug R&D are also reviewed.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 9","pages":"1025-9"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primate models for cardiovascular drug research and development.\",\"authors\":\"You-Tang Shen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the primary impediments to successful drug R&D is the frequent failure of successfully translating positive results obtained in animal models to human disease. To a large degree, this discrepancy is secondary to the substantial biological differences between species. Non-human primate models have the advantage of significant physiological, metabolic, biochemical and genetic similarity to humans. Despite this advantage, there has been a relative paucity of non-human primate models used in the study of disease states that currently underlie the most common causes of morbidity and mortality, such as chronic myocardial ischemia leading to heart failure. This review describes a primate model of heart failure that closely mimics the cardiomyopathic process observed in humans. The primary advantage of this non-human primate model is that, unlike existing heart failure models, it allows for continuous study during progressive stages of heart failure, including myocardial ischemia, progressive left ventricular remodeling and end-stage congestive heart failure. In addition to this model of heart failure, other non-human primate models for cardiovascular drug R&D are also reviewed.</p>\",\"PeriodicalId\":10978,\"journal\":{\"name\":\"Current opinion in investigational drugs\",\"volume\":\"11 9\",\"pages\":\"1025-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in investigational drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成功的药物研发的主要障碍之一是经常不能成功地将在动物模型中获得的积极结果转化为人类疾病。在很大程度上,这种差异是次要的,次于物种之间巨大的生物学差异。非人灵长类动物模型与人类具有显著的生理、代谢、生化和遗传相似性。尽管有这一优势,但用于研究疾病状态的非人类灵长类动物模型相对较少,而这些疾病状态是目前最常见的发病和死亡原因的基础,例如导致心力衰竭的慢性心肌缺血。这篇综述描述了一种灵长类动物的心力衰竭模型,它与人类观察到的心肌病过程非常相似。这种非人类灵长类动物模型的主要优势在于,与现有的心力衰竭模型不同,它允许在心力衰竭的进行性阶段进行持续研究,包括心肌缺血、进行性左心室重构和终末期充血性心力衰竭。除了这种心力衰竭模型,其他用于心血管药物研发的非人类灵长类动物模型也进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primate models for cardiovascular drug research and development.

One of the primary impediments to successful drug R&D is the frequent failure of successfully translating positive results obtained in animal models to human disease. To a large degree, this discrepancy is secondary to the substantial biological differences between species. Non-human primate models have the advantage of significant physiological, metabolic, biochemical and genetic similarity to humans. Despite this advantage, there has been a relative paucity of non-human primate models used in the study of disease states that currently underlie the most common causes of morbidity and mortality, such as chronic myocardial ischemia leading to heart failure. This review describes a primate model of heart failure that closely mimics the cardiomyopathic process observed in humans. The primary advantage of this non-human primate model is that, unlike existing heart failure models, it allows for continuous study during progressive stages of heart failure, including myocardial ischemia, progressive left ventricular remodeling and end-stage congestive heart failure. In addition to this model of heart failure, other non-human primate models for cardiovascular drug R&D are also reviewed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信