一种新的EM算法用于PET的直接四维表模参数重建。

Jianhua Yan, Beata Planeta-Wilson, Richard E Carson
{"title":"一种新的EM算法用于PET的直接四维表模参数重建。","authors":"Jianhua Yan,&nbsp;Beata Planeta-Wilson,&nbsp;Richard E Carson","doi":"10.1109/NSSMIC.2008.4774103","DOIUrl":null,"url":null,"abstract":"<p><p>We present a direct method for producing images of kinetic parameters from list mode PET data. The time-activity curve for each voxel is described by a one-tissue compartment, 2-parameter model. Extending previous EM algorithms, a new spatiotemporal complete data space was introduced to optimize the maximum likelihood function. This leads to a straightforward parametric image update equation with moderate additional computation requirements compared to the conventional algorithm. Qualitative and quantitative evaluations were performed using 2D (x,t) and 4D (x,y,z,t) simulated list mode data for a brain receptor study. Comparisons with the two-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation) show that the proposed method can lead to accurate estimation of the parametric image values with reduced variance, especially for the volume of distribution (V(T)).</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"4774103 ","pages":"3625-3628"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2008.4774103","citationCount":"35","resultStr":"{\"title\":\"Direct 4D List Mode Parametric Reconstruction for PET with a Novel EM Algorithm.\",\"authors\":\"Jianhua Yan,&nbsp;Beata Planeta-Wilson,&nbsp;Richard E Carson\",\"doi\":\"10.1109/NSSMIC.2008.4774103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a direct method for producing images of kinetic parameters from list mode PET data. The time-activity curve for each voxel is described by a one-tissue compartment, 2-parameter model. Extending previous EM algorithms, a new spatiotemporal complete data space was introduced to optimize the maximum likelihood function. This leads to a straightforward parametric image update equation with moderate additional computation requirements compared to the conventional algorithm. Qualitative and quantitative evaluations were performed using 2D (x,t) and 4D (x,y,z,t) simulated list mode data for a brain receptor study. Comparisons with the two-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation) show that the proposed method can lead to accurate estimation of the parametric image values with reduced variance, especially for the volume of distribution (V(T)).</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"4774103 \",\"pages\":\"3625-3628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NSSMIC.2008.4774103\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2008.4774103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2008.4774103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们提出了一种直接从表模PET数据中产生动力学参数图像的方法。每个体素的时间-活动曲线由一个单组织隔间,2参数模型描述。在原有算法的基础上,引入了一种新的时空完备数据空间来优化最大似然函数。这导致了一个简单的参数图像更新方程,与传统算法相比,它具有适度的额外计算需求。使用2D (x,t)和4D (x,y,z,t)模拟列表模式数据进行脑受体研究的定性和定量评估。与两步方法(基于帧的重建,然后逐体素参数估计)的比较表明,该方法可以准确估计参数图像值,且方差减小,特别是对于分布体积(V(T))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct 4D List Mode Parametric Reconstruction for PET with a Novel EM Algorithm.

We present a direct method for producing images of kinetic parameters from list mode PET data. The time-activity curve for each voxel is described by a one-tissue compartment, 2-parameter model. Extending previous EM algorithms, a new spatiotemporal complete data space was introduced to optimize the maximum likelihood function. This leads to a straightforward parametric image update equation with moderate additional computation requirements compared to the conventional algorithm. Qualitative and quantitative evaluations were performed using 2D (x,t) and 4D (x,y,z,t) simulated list mode data for a brain receptor study. Comparisons with the two-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation) show that the proposed method can lead to accurate estimation of the parametric image values with reduced variance, especially for the volume of distribution (V(T)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信