{"title":"遗传性神经系统疾病中的钙通道病变:与获得性通道障碍的药物筛选相关。","authors":"Philippe Lory, Alexandre Mezghrani","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations located in the human genes encoding voltage-gated calcium channels are responsible for a variety of diseases referred to as calcium channelopathies, including familial hemiplegic migraine, episodic ataxia type 2, spinocerebellar ataxia type 6, childhood absence epilepsy and autism spectrum disorder, all of which are rare inherited forms of common neurological disorders. The genetic basis of these calcium channelopathies provides a unique opportunity to investigate their underlying mechanisms from the molecular to whole-organism levels. Studies of channelopathies provide insight on the relationships between channel structure and function, and reveal diverse and unexpected physiological roles for the channels. Importantly, these studies may also lead to the identification of drugs for the treatment of genetically acquired channel disorders, as well as to novel therapeutic practices. In this feature review, recent findings regarding neurological calcium channelopathies are discussed.</p>","PeriodicalId":55031,"journal":{"name":"Idrugs","volume":"13 7","pages":"467-71"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium channelopathies in inherited neurological disorders: relevance to drug screening for acquired channel disorders.\",\"authors\":\"Philippe Lory, Alexandre Mezghrani\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations located in the human genes encoding voltage-gated calcium channels are responsible for a variety of diseases referred to as calcium channelopathies, including familial hemiplegic migraine, episodic ataxia type 2, spinocerebellar ataxia type 6, childhood absence epilepsy and autism spectrum disorder, all of which are rare inherited forms of common neurological disorders. The genetic basis of these calcium channelopathies provides a unique opportunity to investigate their underlying mechanisms from the molecular to whole-organism levels. Studies of channelopathies provide insight on the relationships between channel structure and function, and reveal diverse and unexpected physiological roles for the channels. Importantly, these studies may also lead to the identification of drugs for the treatment of genetically acquired channel disorders, as well as to novel therapeutic practices. In this feature review, recent findings regarding neurological calcium channelopathies are discussed.</p>\",\"PeriodicalId\":55031,\"journal\":{\"name\":\"Idrugs\",\"volume\":\"13 7\",\"pages\":\"467-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Idrugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Idrugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calcium channelopathies in inherited neurological disorders: relevance to drug screening for acquired channel disorders.
Mutations located in the human genes encoding voltage-gated calcium channels are responsible for a variety of diseases referred to as calcium channelopathies, including familial hemiplegic migraine, episodic ataxia type 2, spinocerebellar ataxia type 6, childhood absence epilepsy and autism spectrum disorder, all of which are rare inherited forms of common neurological disorders. The genetic basis of these calcium channelopathies provides a unique opportunity to investigate their underlying mechanisms from the molecular to whole-organism levels. Studies of channelopathies provide insight on the relationships between channel structure and function, and reveal diverse and unexpected physiological roles for the channels. Importantly, these studies may also lead to the identification of drugs for the treatment of genetically acquired channel disorders, as well as to novel therapeutic practices. In this feature review, recent findings regarding neurological calcium channelopathies are discussed.