非线性状态空间模型贝叶斯分析的自适应混合建模Metropolis方法。

Jarad Niemi, Mike West
{"title":"非线性状态空间模型贝叶斯分析的自适应混合建模Metropolis方法。","authors":"Jarad Niemi, Mike West","doi":"10.1198/jcgs.2010.08117","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.</p>","PeriodicalId":520666,"journal":{"name":"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America","volume":" ","pages":"260-280"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887612/pdf/nihms190399.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.\",\"authors\":\"Jarad Niemi, Mike West\",\"doi\":\"10.1198/jcgs.2010.08117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.</p>\",\"PeriodicalId\":520666,\"journal\":{\"name\":\"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America\",\"volume\":\" \",\"pages\":\"260-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887612/pdf/nihms190399.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1198/jcgs.2010.08117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1198/jcgs.2010.08117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种非线性、非高斯状态空间模型的马尔可夫链蒙特卡罗分析策略,涉及对动态、潜在状态变量和固定模型参数进行推理的批分析。关键的创新是Metropolis-Hastings方法,该方法基于使用正态混合的滤波和平滑密度的顺序逼近来处理状态变量的时间序列。使用精确的局部混合近似方法对这些混合进行非线性传播,并使用再生过程来处理混合成分的潜在退化。这为顺序滤波和回溯平滑分布提供了准确、直接的近似,因此为模拟状态集的后验提供了一个有用的全局Metropolis建议分布构造。该分析嵌入在吉布斯采样器中,以包括不确定的固定参数。我们以系统生物学中的一个应用为例。补充材料提供了一个基于随机波动模型的示例以及MATLAB代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.

Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.

Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.

Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.

We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信