{"title":"在转录延伸过程中核小体是如何被破坏的?","authors":"Jordanka Zlatanova, Jean-Marc Victor","doi":"10.2976/1.3249971","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin structure is a powerful tool to regulate eukaryotic transcription. Moreover, nucleosomes are constantly remodeled, disassembled, and reassembled in the body of transcribed genes. Here we propose a general model that explains, in quantitative terms, how transcription elongation affects nucleosome structure at a distance as a result of the positive torque the polymerases create as they translocate along DNA templates.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"3 6","pages":"373-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3249971","citationCount":"15","resultStr":"{\"title\":\"How are nucleosomes disrupted during transcription elongation?\",\"authors\":\"Jordanka Zlatanova, Jean-Marc Victor\",\"doi\":\"10.2976/1.3249971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromatin structure is a powerful tool to regulate eukaryotic transcription. Moreover, nucleosomes are constantly remodeled, disassembled, and reassembled in the body of transcribed genes. Here we propose a general model that explains, in quantitative terms, how transcription elongation affects nucleosome structure at a distance as a result of the positive torque the polymerases create as they translocate along DNA templates.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"3 6\",\"pages\":\"373-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3249971\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3249971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3249971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/11/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
How are nucleosomes disrupted during transcription elongation?
Chromatin structure is a powerful tool to regulate eukaryotic transcription. Moreover, nucleosomes are constantly remodeled, disassembled, and reassembled in the body of transcribed genes. Here we propose a general model that explains, in quantitative terms, how transcription elongation affects nucleosome structure at a distance as a result of the positive torque the polymerases create as they translocate along DNA templates.