{"title":"丙烯酸骨水泥:时间和环境对物理性能的影响。","authors":"Markus Nottrott","doi":"10.3109/17453674.2010.487929","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylic bone cements are in extensive use in joint replacement surgery. They are weight bearing and load transferring in the bone-cement-prosthesis complex and therefore, inter alia, their mechanical properties are deemed to be crucial for the overall outcome. In spite of adequate preclinical test results according to the current specifications (ISO, ASTM), cements with inferior clinical results have appeared on the market. The aim of this study was to investigate whether it is possible to predict the long term clinical performance of acrylic bone cement on the basis of mechanical in vitro testing. We performed in vitro quasistatic testing of cement after aging in different media and at different temperatures for up to 5 years. Dynamic creep testing and testing of retrieved cement were also performed. Testing under dry conditions, as required in current standards, always gave higher values for mechanical properties than did storage and testing under more physiological conditions. We could demonstrate a continuous increase in mechanical properties when testing in air, while testing in water resulted in a slight decrease in mechanical properties after 1 week and then levelled out. Palacos bone cement showed a higher creep than CMW3G and the retrieved Boneloc specimens showed a higher creep than retrieved Palacos. The strength of a bone cement develops more slowly than the apparent high initial setting rate indicates and there are changes in mechanical properties over a period of five years. The effect of water absorption is important for the physical properties but the mechanical changes caused by physical aging are still present after immersion in water. The established standards are in need of more clinically relevant test methods and their associated requirements need better definition. We recommend that testing of bone cements should be performed after extended aging under simulated physiological conditions. Simple quasistatic and dynamic creep tests seem unable to predict clinical performance of acrylic bone cements when the products under test are chemically very similar. However, such testing might be clinically relevant if the cements exhibit substantial differences.</p>","PeriodicalId":87168,"journal":{"name":"Acta orthopaedica. Supplementum","volume":"81 341","pages":"1-27"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/17453674.2010.487929","citationCount":"24","resultStr":"{\"title\":\"Acrylic bone cements: influence of time and environment on physical properties.\",\"authors\":\"Markus Nottrott\",\"doi\":\"10.3109/17453674.2010.487929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrylic bone cements are in extensive use in joint replacement surgery. They are weight bearing and load transferring in the bone-cement-prosthesis complex and therefore, inter alia, their mechanical properties are deemed to be crucial for the overall outcome. In spite of adequate preclinical test results according to the current specifications (ISO, ASTM), cements with inferior clinical results have appeared on the market. The aim of this study was to investigate whether it is possible to predict the long term clinical performance of acrylic bone cement on the basis of mechanical in vitro testing. We performed in vitro quasistatic testing of cement after aging in different media and at different temperatures for up to 5 years. Dynamic creep testing and testing of retrieved cement were also performed. Testing under dry conditions, as required in current standards, always gave higher values for mechanical properties than did storage and testing under more physiological conditions. We could demonstrate a continuous increase in mechanical properties when testing in air, while testing in water resulted in a slight decrease in mechanical properties after 1 week and then levelled out. Palacos bone cement showed a higher creep than CMW3G and the retrieved Boneloc specimens showed a higher creep than retrieved Palacos. The strength of a bone cement develops more slowly than the apparent high initial setting rate indicates and there are changes in mechanical properties over a period of five years. The effect of water absorption is important for the physical properties but the mechanical changes caused by physical aging are still present after immersion in water. The established standards are in need of more clinically relevant test methods and their associated requirements need better definition. We recommend that testing of bone cements should be performed after extended aging under simulated physiological conditions. Simple quasistatic and dynamic creep tests seem unable to predict clinical performance of acrylic bone cements when the products under test are chemically very similar. However, such testing might be clinically relevant if the cements exhibit substantial differences.</p>\",\"PeriodicalId\":87168,\"journal\":{\"name\":\"Acta orthopaedica. Supplementum\",\"volume\":\"81 341\",\"pages\":\"1-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/17453674.2010.487929\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta orthopaedica. Supplementum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/17453674.2010.487929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta orthopaedica. Supplementum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/17453674.2010.487929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acrylic bone cements: influence of time and environment on physical properties.
Acrylic bone cements are in extensive use in joint replacement surgery. They are weight bearing and load transferring in the bone-cement-prosthesis complex and therefore, inter alia, their mechanical properties are deemed to be crucial for the overall outcome. In spite of adequate preclinical test results according to the current specifications (ISO, ASTM), cements with inferior clinical results have appeared on the market. The aim of this study was to investigate whether it is possible to predict the long term clinical performance of acrylic bone cement on the basis of mechanical in vitro testing. We performed in vitro quasistatic testing of cement after aging in different media and at different temperatures for up to 5 years. Dynamic creep testing and testing of retrieved cement were also performed. Testing under dry conditions, as required in current standards, always gave higher values for mechanical properties than did storage and testing under more physiological conditions. We could demonstrate a continuous increase in mechanical properties when testing in air, while testing in water resulted in a slight decrease in mechanical properties after 1 week and then levelled out. Palacos bone cement showed a higher creep than CMW3G and the retrieved Boneloc specimens showed a higher creep than retrieved Palacos. The strength of a bone cement develops more slowly than the apparent high initial setting rate indicates and there are changes in mechanical properties over a period of five years. The effect of water absorption is important for the physical properties but the mechanical changes caused by physical aging are still present after immersion in water. The established standards are in need of more clinically relevant test methods and their associated requirements need better definition. We recommend that testing of bone cements should be performed after extended aging under simulated physiological conditions. Simple quasistatic and dynamic creep tests seem unable to predict clinical performance of acrylic bone cements when the products under test are chemically very similar. However, such testing might be clinically relevant if the cements exhibit substantial differences.