Laurent Mailly, Céline Leboeuf, Pierre Tiberghien, Thomas Baumert, Eric Robinet
{"title":"表达更昔洛韦敏感的HSV-tk自杀基因的基因工程t细胞预防GvHD。","authors":"Laurent Mailly, Céline Leboeuf, Pierre Tiberghien, Thomas Baumert, Eric Robinet","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro and in vivo preclinical studies and phase I/II clinical trials have demonstrated that the retroviral-mediated transfer of the suicide gene HSV-thymidine kinase into donor T-cells prior to infusion (ie, a 2-week ex vivo process including activation, retroviral transduction and selection of transduced cells), at the time of T-cell-depleted hematopoietic stem cell transplantation (HSCT) or as donor lymphocyte infusion after relapse, allows for the efficient control of donor T-cell alloreactivity. These donor suicide gene-modified T-cells (SGMTCs) can provide beneficial anti-leukemic, antiviral and immune reconstitution-facilitating effects to the recipient of an allogeneic HSCT. However, if the infused SGMTCs lead to GvHD, a severe complication of HSCT, these cells can be specifically depleted in vivo by the administration of the prodrug ganciclovir (GCV), without any associated immunosuppression. Limitations to this approach include a gene transfer-induced decrease in alloreactivity and antiviral reactivity, the immunogenicity of SGMTCs, and the development of GCV-resistant SGMTCs. However, major improvements that can prevent these limitations, such as introducing CD3/CD28 costimulation and immunomagnetic selection, have been applied to this approach, but further improvements are still required. The efficacy of suicide gene therapy as a safety control system allows the development of this strategy for gene therapy or immunotherapy approaches.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 5","pages":"559-70"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically engineered T-cells expressing a ganciclovir-sensitive HSV-tk suicide gene for the prevention of GvHD.\",\"authors\":\"Laurent Mailly, Céline Leboeuf, Pierre Tiberghien, Thomas Baumert, Eric Robinet\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vitro and in vivo preclinical studies and phase I/II clinical trials have demonstrated that the retroviral-mediated transfer of the suicide gene HSV-thymidine kinase into donor T-cells prior to infusion (ie, a 2-week ex vivo process including activation, retroviral transduction and selection of transduced cells), at the time of T-cell-depleted hematopoietic stem cell transplantation (HSCT) or as donor lymphocyte infusion after relapse, allows for the efficient control of donor T-cell alloreactivity. These donor suicide gene-modified T-cells (SGMTCs) can provide beneficial anti-leukemic, antiviral and immune reconstitution-facilitating effects to the recipient of an allogeneic HSCT. However, if the infused SGMTCs lead to GvHD, a severe complication of HSCT, these cells can be specifically depleted in vivo by the administration of the prodrug ganciclovir (GCV), without any associated immunosuppression. Limitations to this approach include a gene transfer-induced decrease in alloreactivity and antiviral reactivity, the immunogenicity of SGMTCs, and the development of GCV-resistant SGMTCs. However, major improvements that can prevent these limitations, such as introducing CD3/CD28 costimulation and immunomagnetic selection, have been applied to this approach, but further improvements are still required. The efficacy of suicide gene therapy as a safety control system allows the development of this strategy for gene therapy or immunotherapy approaches.</p>\",\"PeriodicalId\":10978,\"journal\":{\"name\":\"Current opinion in investigational drugs\",\"volume\":\"11 5\",\"pages\":\"559-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in investigational drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetically engineered T-cells expressing a ganciclovir-sensitive HSV-tk suicide gene for the prevention of GvHD.
In vitro and in vivo preclinical studies and phase I/II clinical trials have demonstrated that the retroviral-mediated transfer of the suicide gene HSV-thymidine kinase into donor T-cells prior to infusion (ie, a 2-week ex vivo process including activation, retroviral transduction and selection of transduced cells), at the time of T-cell-depleted hematopoietic stem cell transplantation (HSCT) or as donor lymphocyte infusion after relapse, allows for the efficient control of donor T-cell alloreactivity. These donor suicide gene-modified T-cells (SGMTCs) can provide beneficial anti-leukemic, antiviral and immune reconstitution-facilitating effects to the recipient of an allogeneic HSCT. However, if the infused SGMTCs lead to GvHD, a severe complication of HSCT, these cells can be specifically depleted in vivo by the administration of the prodrug ganciclovir (GCV), without any associated immunosuppression. Limitations to this approach include a gene transfer-induced decrease in alloreactivity and antiviral reactivity, the immunogenicity of SGMTCs, and the development of GCV-resistant SGMTCs. However, major improvements that can prevent these limitations, such as introducing CD3/CD28 costimulation and immunomagnetic selection, have been applied to this approach, but further improvements are still required. The efficacy of suicide gene therapy as a safety control system allows the development of this strategy for gene therapy or immunotherapy approaches.