{"title":"在室温下对小分子进行光学操作","authors":"Hiro Minamimoto, Nobuaki Oyamada, Kei Murakoshi","doi":"10.1016/j.jphotochemrev.2023.100582","DOIUrl":null,"url":null,"abstract":"<div><p>Room-temperature optical manipulation of small molecules is a challenging issue in the field of material science. To increase optical force for a single molecule trapping, it has been recognized that resonant excitation of molecules should be controlled under the light illumination. Strongly interacting molecules with solid surfaces at electrified interfaces show the exotic behavior of electronic excitation<span> by localized surface plasmon. In this review, we emphases that surface-enhanced Raman scattering can be used to evaluate the resonant excitation of target molecules at interfaces. Under such excitation, the diffusion of small molecules can be controlled by the optical force generated by the intensity gradient of a highly localized electric field.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"55 ","pages":"Article 100582"},"PeriodicalIF":12.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward room-temperature optical manipulation of small molecules\",\"authors\":\"Hiro Minamimoto, Nobuaki Oyamada, Kei Murakoshi\",\"doi\":\"10.1016/j.jphotochemrev.2023.100582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Room-temperature optical manipulation of small molecules is a challenging issue in the field of material science. To increase optical force for a single molecule trapping, it has been recognized that resonant excitation of molecules should be controlled under the light illumination. Strongly interacting molecules with solid surfaces at electrified interfaces show the exotic behavior of electronic excitation<span> by localized surface plasmon. In this review, we emphases that surface-enhanced Raman scattering can be used to evaluate the resonant excitation of target molecules at interfaces. Under such excitation, the diffusion of small molecules can be controlled by the optical force generated by the intensity gradient of a highly localized electric field.</span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"55 \",\"pages\":\"Article 100582\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Toward room-temperature optical manipulation of small molecules
Room-temperature optical manipulation of small molecules is a challenging issue in the field of material science. To increase optical force for a single molecule trapping, it has been recognized that resonant excitation of molecules should be controlled under the light illumination. Strongly interacting molecules with solid surfaces at electrified interfaces show the exotic behavior of electronic excitation by localized surface plasmon. In this review, we emphases that surface-enhanced Raman scattering can be used to evaluate the resonant excitation of target molecules at interfaces. Under such excitation, the diffusion of small molecules can be controlled by the optical force generated by the intensity gradient of a highly localized electric field.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.