{"title":"多能干细胞,糖尿病治疗β细胞的潜在来源。","authors":"Mattias Hansson, Ole D Madsen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Although the reconstitution of a functional beta-cell mass by transplantation of isolated islets can restore euglycemia in the absence of insulin treatment, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus (T1DM). Advances in the directed differentiation of pluripotent stem cells toward beta-cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta-cells. However, progress toward a clinical application of this technology is slow and challenging. This review highlights some of the critical issues impeding the translation of stem cell-based diabetes therapies to the clinic.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 4","pages":"417-25"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pluripotent stem cells, a potential source of beta-cells for diabetes therapy.\",\"authors\":\"Mattias Hansson, Ole D Madsen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the reconstitution of a functional beta-cell mass by transplantation of isolated islets can restore euglycemia in the absence of insulin treatment, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus (T1DM). Advances in the directed differentiation of pluripotent stem cells toward beta-cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta-cells. However, progress toward a clinical application of this technology is slow and challenging. This review highlights some of the critical issues impeding the translation of stem cell-based diabetes therapies to the clinic.</p>\",\"PeriodicalId\":10978,\"journal\":{\"name\":\"Current opinion in investigational drugs\",\"volume\":\"11 4\",\"pages\":\"417-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in investigational drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pluripotent stem cells, a potential source of beta-cells for diabetes therapy.
Although the reconstitution of a functional beta-cell mass by transplantation of isolated islets can restore euglycemia in the absence of insulin treatment, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus (T1DM). Advances in the directed differentiation of pluripotent stem cells toward beta-cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta-cells. However, progress toward a clinical application of this technology is slow and challenging. This review highlights some of the critical issues impeding the translation of stem cell-based diabetes therapies to the clinic.