多壁碳纳米管官能团对Ru催化剂山梨醇氢解制乙二醇性能的影响

IF 5.062
Xingcui Guo , Huihuan Dong , Bin Li , Linlin Dong , Xindong Mu , Xiufang Chen
{"title":"多壁碳纳米管官能团对Ru催化剂山梨醇氢解制乙二醇性能的影响","authors":"Xingcui Guo ,&nbsp;Huihuan Dong ,&nbsp;Bin Li ,&nbsp;Linlin Dong ,&nbsp;Xindong Mu ,&nbsp;Xiufang Chen","doi":"10.1016/j.molcata.2016.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Different functional groups (i.e. <img>NH<sub>2</sub>, <img>COOH, <img>OH and nitrogen-doping) modified CNTs (denoted as AMCN, CMCN, HMCN and NMCN, respectively) supported ruthenium catalysts (Ru/AMCN, Ru/CMCN, Ru/HMCN and Ru/NMCN) were prepared by incipient wetness impregnation method. They were fully characterized by XRD, TG, Raman, XPS, TPD and TEM to elucidate the relationship between the physical property and their catalytic performance. TEM results shown that Ru particles were well dispersed on the surface for all the samples with the size of 1.48–1.99<!--> <!-->nm. The effects of functional groups of carbon nanotubes (CNTs), nitrogen doping and base additive types on activity and selectivity of ethylene glycol (EG) and propylene glycol (1,2-PD) were investigated. In addition, the activity and final products distribution were much influenced by the properties of functional groups on CNTs and the type of metal cation of the base promoters, which probably participated in the reaction for accelerating a retro-aldol reaction for C<img>C cleavage. Among the catalysts, Ru supported on AMCN exhibited the best catalytic activities and glycols selectivities than on MCN, CMCN, HMCN and NMCN.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 79-87"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.003","citationCount":"24","resultStr":"{\"title\":\"Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols\",\"authors\":\"Xingcui Guo ,&nbsp;Huihuan Dong ,&nbsp;Bin Li ,&nbsp;Linlin Dong ,&nbsp;Xindong Mu ,&nbsp;Xiufang Chen\",\"doi\":\"10.1016/j.molcata.2016.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different functional groups (i.e. <img>NH<sub>2</sub>, <img>COOH, <img>OH and nitrogen-doping) modified CNTs (denoted as AMCN, CMCN, HMCN and NMCN, respectively) supported ruthenium catalysts (Ru/AMCN, Ru/CMCN, Ru/HMCN and Ru/NMCN) were prepared by incipient wetness impregnation method. They were fully characterized by XRD, TG, Raman, XPS, TPD and TEM to elucidate the relationship between the physical property and their catalytic performance. TEM results shown that Ru particles were well dispersed on the surface for all the samples with the size of 1.48–1.99<!--> <!-->nm. The effects of functional groups of carbon nanotubes (CNTs), nitrogen doping and base additive types on activity and selectivity of ethylene glycol (EG) and propylene glycol (1,2-PD) were investigated. In addition, the activity and final products distribution were much influenced by the properties of functional groups on CNTs and the type of metal cation of the base promoters, which probably participated in the reaction for accelerating a retro-aldol reaction for C<img>C cleavage. Among the catalysts, Ru supported on AMCN exhibited the best catalytic activities and glycols selectivities than on MCN, CMCN, HMCN and NMCN.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 79-87\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.003\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

采用初湿浸渍法制备了不同官能团(NH2、COOH、OH和氮掺杂)修饰的CNTs(分别为AMCN、CMCN、HMCN和NMCN)负载钌催化剂(Ru/AMCN、Ru/CMCN、Ru/HMCN和Ru/NMCN)。采用XRD、TG、Raman、XPS、TPD和TEM等手段对其进行了表征,以阐明其物理性质与催化性能之间的关系。TEM结果表明,尺寸为1.48 ~ 1.99 nm的样品表面均有较好的Ru颗粒分散。研究了碳纳米管(CNTs)官能团、氮掺杂和碱添加剂类型对乙二醇(EG)和丙二醇(1,2- pd)活性和选择性的影响。此外,碳纳米管上官能团的性质和碱启动子的金属阳离子类型对活性和最终产物分布有很大影响,这可能参与了加速CC裂解的反醛醇反应。其中,负载在AMCN上的Ru比负载在MCN、CMCN、HMCN和NMCN上的Ru表现出最好的催化活性和醇选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols

Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols

Different functional groups (i.e. NH2, COOH, OH and nitrogen-doping) modified CNTs (denoted as AMCN, CMCN, HMCN and NMCN, respectively) supported ruthenium catalysts (Ru/AMCN, Ru/CMCN, Ru/HMCN and Ru/NMCN) were prepared by incipient wetness impregnation method. They were fully characterized by XRD, TG, Raman, XPS, TPD and TEM to elucidate the relationship between the physical property and their catalytic performance. TEM results shown that Ru particles were well dispersed on the surface for all the samples with the size of 1.48–1.99 nm. The effects of functional groups of carbon nanotubes (CNTs), nitrogen doping and base additive types on activity and selectivity of ethylene glycol (EG) and propylene glycol (1,2-PD) were investigated. In addition, the activity and final products distribution were much influenced by the properties of functional groups on CNTs and the type of metal cation of the base promoters, which probably participated in the reaction for accelerating a retro-aldol reaction for CC cleavage. Among the catalysts, Ru supported on AMCN exhibited the best catalytic activities and glycols selectivities than on MCN, CMCN, HMCN and NMCN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.8 months
期刊介绍: The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信