DFT计算支持下CO在Pt纳米颗粒上吸附的DRIFTS研究

IF 5.062
Claudia Lentz, Sara Panahian Jand, Julia Melke, Christina Roth, Payam Kaghazchi
{"title":"DFT计算支持下CO在Pt纳米颗粒上吸附的DRIFTS研究","authors":"Claudia Lentz,&nbsp;Sara Panahian Jand,&nbsp;Julia Melke,&nbsp;Christina Roth,&nbsp;Payam Kaghazchi","doi":"10.1016/j.molcata.2016.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive research has been devoted to the assignment of IR bands of CO adsorbed on Pt nanoparticles, which are widely used in heterogeneous and electrocatalysis (e.g. fuel cells). In contrast to single crystal studies, the assignment of CO adsorption to the nanoparticle structure is still controversial. Here we present a case study where we assign CO adsorption bands to the structure of Platinum nanoparticles with a given size distribution. Using a special diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) cell allows to achieve high quality data under in-situ conditions. Temperature dependent CO adsorption spectra are resolved into three bands which depend on the applied flow and pretreatment conditions. Our calculations using Density Functional Theory (DFT) can mimic the experimental findings and link these bands to the particle structure. By explicitly calculating the IR spectra of CO/Pt nanoparticles of different sizes we show that the IR bands are due to a combined size and site effect. For fully covered small nanoparticles the IR bands are attributed to all binding sites. For larger nanoparticles the dominant contribution is related to {111} facets but the other bands are still site independent. Here we provide a tool to assign CO adsorption bands on Platinum nanoparticles with a given size distribution. This can be related to the structure–acitvity relationship which is required for a tailored catalyst design.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 1-9"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.002","citationCount":"51","resultStr":"{\"title\":\"DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations\",\"authors\":\"Claudia Lentz,&nbsp;Sara Panahian Jand,&nbsp;Julia Melke,&nbsp;Christina Roth,&nbsp;Payam Kaghazchi\",\"doi\":\"10.1016/j.molcata.2016.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extensive research has been devoted to the assignment of IR bands of CO adsorbed on Pt nanoparticles, which are widely used in heterogeneous and electrocatalysis (e.g. fuel cells). In contrast to single crystal studies, the assignment of CO adsorption to the nanoparticle structure is still controversial. Here we present a case study where we assign CO adsorption bands to the structure of Platinum nanoparticles with a given size distribution. Using a special diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) cell allows to achieve high quality data under in-situ conditions. Temperature dependent CO adsorption spectra are resolved into three bands which depend on the applied flow and pretreatment conditions. Our calculations using Density Functional Theory (DFT) can mimic the experimental findings and link these bands to the particle structure. By explicitly calculating the IR spectra of CO/Pt nanoparticles of different sizes we show that the IR bands are due to a combined size and site effect. For fully covered small nanoparticles the IR bands are attributed to all binding sites. For larger nanoparticles the dominant contribution is related to {111} facets but the other bands are still site independent. Here we provide a tool to assign CO adsorption bands on Platinum nanoparticles with a given size distribution. This can be related to the structure–acitvity relationship which is required for a tailored catalyst design.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.002\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138111691630423X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138111691630423X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

广泛应用于多相催化和电催化(如燃料电池)的铂纳米颗粒吸附CO的红外波段的分配已经得到了广泛的研究。与单晶研究相反,纳米颗粒结构对CO吸附的分配仍然存在争议。在这里,我们提出了一个案例研究,我们分配CO吸附带的铂纳米颗粒的结构具有给定的尺寸分布。使用特殊的漫反射红外傅立叶变换光谱(DRIFTS)单元可以在原位条件下获得高质量的数据。温度相关的CO吸附光谱根据应用流量和预处理条件分为三个波段。我们的计算使用密度泛函理论(DFT)可以模拟实验结果,并将这些波段与粒子结构联系起来。通过明确计算不同尺寸的CO/Pt纳米粒子的红外光谱,我们发现这些红外波段是由尺寸和位置效应共同作用的结果。对于完全覆盖的小纳米颗粒,红外波段归因于所有结合位点。对于较大的纳米颗粒,主要贡献与{111}面有关,但其他波段仍然与位无关。在这里,我们提供了一种工具来分配CO吸附带上的铂纳米颗粒具有给定的尺寸分布。这可能与定制催化剂设计所需的结构-活性关系有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations

Extensive research has been devoted to the assignment of IR bands of CO adsorbed on Pt nanoparticles, which are widely used in heterogeneous and electrocatalysis (e.g. fuel cells). In contrast to single crystal studies, the assignment of CO adsorption to the nanoparticle structure is still controversial. Here we present a case study where we assign CO adsorption bands to the structure of Platinum nanoparticles with a given size distribution. Using a special diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) cell allows to achieve high quality data under in-situ conditions. Temperature dependent CO adsorption spectra are resolved into three bands which depend on the applied flow and pretreatment conditions. Our calculations using Density Functional Theory (DFT) can mimic the experimental findings and link these bands to the particle structure. By explicitly calculating the IR spectra of CO/Pt nanoparticles of different sizes we show that the IR bands are due to a combined size and site effect. For fully covered small nanoparticles the IR bands are attributed to all binding sites. For larger nanoparticles the dominant contribution is related to {111} facets but the other bands are still site independent. Here we provide a tool to assign CO adsorption bands on Platinum nanoparticles with a given size distribution. This can be related to the structure–acitvity relationship which is required for a tailored catalyst design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.8 months
期刊介绍: The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信