利用潜在主题从文献中预测蛋白质与蛋白质的关系。

Tatsuya Aso, Koji Eguchi
{"title":"利用潜在主题从文献中预测蛋白质与蛋白质的关系。","authors":"Tatsuya Aso,&nbsp;Koji Eguchi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model. We also apply probabilistic Latent Semantic Analysis (pLSA) as a baseline for comparison, and compare them from the viewpoints of log-likelihood, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the others, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.</p>","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting protein-protein relationships from literature using latent topics.\",\"authors\":\"Tatsuya Aso,&nbsp;Koji Eguchi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model. We also apply probabilistic Latent Semantic Analysis (pLSA) as a baseline for comparison, and compare them from the viewpoints of log-likelihood, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the others, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.</p>\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了应用统计主题模型来提取和预测生物实体之间的关系,特别是蛋白质提及。潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)是一种很有前途的统计主题模型;然而,它还没有被研究用于这样的任务。在本文中,我们应用最先进的崩溃变分贝叶斯推理和吉布斯抽样推理来估计LDA模型。我们还采用概率潜在语义分析(pLSA)作为基线进行比较,并从对数似然、分类准确率和检索效率的角度对它们进行了比较。通过实验证明,在蛋白质-蛋白质关系预测任务中,崩塌变分LDA在分类精度和检索效率方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting protein-protein relationships from literature using latent topics.

This paper investigates applying statistical topic models to extract and predict relationships between biological entities, especially protein mentions. A statistical topic model, Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian Inference and Gibbs Sampling inference to estimating the LDA model. We also apply probabilistic Latent Semantic Analysis (pLSA) as a baseline for comparison, and compare them from the viewpoints of log-likelihood, classification accuracy and retrieval effectiveness. We demonstrate through experiments that the Collapsed Variational LDA gives better results than the others, especially in terms of classification accuracy and retrieval effectiveness in the task of the protein-protein relationship prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信