Laurie J Reichling, Steven M Riddle, Baigen Mei, Rica Bruinsma, Tony A Goossens, Kristin G Huwiler, Mark Maffitt, Alyssa M G Newport, Xiao-Dong Qian, Carmen Ruttimann-Johnson, Kurt W Vogel
{"title":"表征amp活化蛋白激酶(AMPK)小分子激活因子的均相荧光分析。","authors":"Laurie J Reichling, Steven M Riddle, Baigen Mei, Rica Bruinsma, Tony A Goossens, Kristin G Huwiler, Mark Maffitt, Alyssa M G Newport, Xiao-Dong Qian, Carmen Ruttimann-Johnson, Kurt W Vogel","doi":"10.2174/1875397300801010034","DOIUrl":null,"url":null,"abstract":"<p><p>AMP activated protein kinase (AMPK) is a key regulator of cellular metabolism. AMPK activity is modulated in part by binding of AMP to the gamma-subunit of the kinase, which increases the activity of the catalytic alpha-subunit. Because increased AMPK activity in the liver and in skeletal muscle leads to increased fatty acid oxidation and decreased cholesterol and fatty acid biosynthesis, activators of AMPK are being sought for treatment of type-2 diabetes and other metabolic disorders. The unique mechanism of AMPK activation offers an opportunity to develop small molecules that directly upregulate AMPK activity, and there exists a need for simplified methods to identify and characterize small-molecules that show isoform-specific effects on AMPK. We have developed a suite of fluorescence-based assays to identify and characterize such compounds, and have used these to characterize and compare activity of recombinant AMPK alpha(1)beta(1)gamma(1) and alpha(2)beta(1)gamma(1) isoforms in response to small molecule activators and inhibitors.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"1 ","pages":"34-42"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774621/pdf/","citationCount":"2","resultStr":"{\"title\":\"Homogenous fluorescent assays for characterizing small-molecule activators of AMP-activated protein kinase (AMPK).\",\"authors\":\"Laurie J Reichling, Steven M Riddle, Baigen Mei, Rica Bruinsma, Tony A Goossens, Kristin G Huwiler, Mark Maffitt, Alyssa M G Newport, Xiao-Dong Qian, Carmen Ruttimann-Johnson, Kurt W Vogel\",\"doi\":\"10.2174/1875397300801010034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AMP activated protein kinase (AMPK) is a key regulator of cellular metabolism. AMPK activity is modulated in part by binding of AMP to the gamma-subunit of the kinase, which increases the activity of the catalytic alpha-subunit. Because increased AMPK activity in the liver and in skeletal muscle leads to increased fatty acid oxidation and decreased cholesterol and fatty acid biosynthesis, activators of AMPK are being sought for treatment of type-2 diabetes and other metabolic disorders. The unique mechanism of AMPK activation offers an opportunity to develop small molecules that directly upregulate AMPK activity, and there exists a need for simplified methods to identify and characterize small-molecules that show isoform-specific effects on AMPK. We have developed a suite of fluorescence-based assays to identify and characterize such compounds, and have used these to characterize and compare activity of recombinant AMPK alpha(1)beta(1)gamma(1) and alpha(2)beta(1)gamma(1) isoforms in response to small molecule activators and inhibitors.</p>\",\"PeriodicalId\":88232,\"journal\":{\"name\":\"Current chemical genomics\",\"volume\":\"1 \",\"pages\":\"34-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774621/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current chemical genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875397300801010034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current chemical genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875397300801010034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homogenous fluorescent assays for characterizing small-molecule activators of AMP-activated protein kinase (AMPK).
AMP activated protein kinase (AMPK) is a key regulator of cellular metabolism. AMPK activity is modulated in part by binding of AMP to the gamma-subunit of the kinase, which increases the activity of the catalytic alpha-subunit. Because increased AMPK activity in the liver and in skeletal muscle leads to increased fatty acid oxidation and decreased cholesterol and fatty acid biosynthesis, activators of AMPK are being sought for treatment of type-2 diabetes and other metabolic disorders. The unique mechanism of AMPK activation offers an opportunity to develop small molecules that directly upregulate AMPK activity, and there exists a need for simplified methods to identify and characterize small-molecules that show isoform-specific effects on AMPK. We have developed a suite of fluorescence-based assays to identify and characterize such compounds, and have used these to characterize and compare activity of recombinant AMPK alpha(1)beta(1)gamma(1) and alpha(2)beta(1)gamma(1) isoforms in response to small molecule activators and inhibitors.