{"title":"美洲狮杀死干细胞延缓癌症?","authors":"Jian Yu","doi":"10.4255/mcpharmacol.09.14","DOIUrl":null,"url":null,"abstract":"<p><p>Apoptosis evasion is a hallmark of human cancer. PUMA is a BH3-only Bcl-2 family protein that mediates both p53-dependent and independent apoptosis. However, its role in tumor suppression had not been well established. Our recent work provides direct evidence that PUMA plays an important role in suppressing intestinal tumorigenesis in two mouse models including (i) the azoxymethane (AOM)/dextran sulfate sodium salt (DSS)-treated mice and (ii) APC(Min/+) mice. The activities of PUMA appeared to be in the intestinal stem cells, and involve both p53-dependent response to DNA damage, and p53-independent mechanisms triggered by inflammation. Our data suggest that the interplay between different apoptotic pathways in intestinal stem cells underlie the initiation of intestinal carcinogenesis, and should be considered in the context of cancer prevention and therapy.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"1 3","pages":"112-118"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800379/pdf/nihms137157.pdf","citationCount":"11","resultStr":"{\"title\":\"PUMA Kills Stem Cells to Stall Cancer?\",\"authors\":\"Jian Yu\",\"doi\":\"10.4255/mcpharmacol.09.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apoptosis evasion is a hallmark of human cancer. PUMA is a BH3-only Bcl-2 family protein that mediates both p53-dependent and independent apoptosis. However, its role in tumor suppression had not been well established. Our recent work provides direct evidence that PUMA plays an important role in suppressing intestinal tumorigenesis in two mouse models including (i) the azoxymethane (AOM)/dextran sulfate sodium salt (DSS)-treated mice and (ii) APC(Min/+) mice. The activities of PUMA appeared to be in the intestinal stem cells, and involve both p53-dependent response to DNA damage, and p53-independent mechanisms triggered by inflammation. Our data suggest that the interplay between different apoptotic pathways in intestinal stem cells underlie the initiation of intestinal carcinogenesis, and should be considered in the context of cancer prevention and therapy.</p>\",\"PeriodicalId\":18748,\"journal\":{\"name\":\"Molecular and cellular pharmacology\",\"volume\":\"1 3\",\"pages\":\"112-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800379/pdf/nihms137157.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and cellular pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4255/mcpharmacol.09.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4255/mcpharmacol.09.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Apoptosis evasion is a hallmark of human cancer. PUMA is a BH3-only Bcl-2 family protein that mediates both p53-dependent and independent apoptosis. However, its role in tumor suppression had not been well established. Our recent work provides direct evidence that PUMA plays an important role in suppressing intestinal tumorigenesis in two mouse models including (i) the azoxymethane (AOM)/dextran sulfate sodium salt (DSS)-treated mice and (ii) APC(Min/+) mice. The activities of PUMA appeared to be in the intestinal stem cells, and involve both p53-dependent response to DNA damage, and p53-independent mechanisms triggered by inflammation. Our data suggest that the interplay between different apoptotic pathways in intestinal stem cells underlie the initiation of intestinal carcinogenesis, and should be considered in the context of cancer prevention and therapy.