BingBing Zhang, ChengYu Xian, YanFeng Luo, YuanLiang Wang
{"title":"机械拉伸作用下成骨细胞机械生长因子的表达及亚细胞定位。","authors":"BingBing Zhang, ChengYu Xian, YanFeng Luo, YuanLiang Wang","doi":"10.1007/s11427-009-0122-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mechano-growth factor (MGF) is a stretch sensitive factor in myocytes, and it might also be produced by other mechanocytes under mechanical stimulation. In this study, both the mRNA and protein expression of MGF were detected in stretched osteoblasts. Quantitative analysis showed that a cyclic stretching stimulation caused a quick and sharp increase of MGF mRNA and protein expression from a low basal level under no stretch; the mRNA and protein levels respectively peaked in 6 and 12 h to 5 and 5.2 fold over the basal level and returned to normal by 24 h. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus. We concluded that cyclic stretching stimulation could induce MGF expression in osteoblasts in a pulsing fashion; and the nuclear distribution of MGF suggested that MGF might act in mechanocytes as an autocrine growth factor.</p>","PeriodicalId":49127,"journal":{"name":"Science in China. Series C, Life Sciences / Chinese Academy of Sciences","volume":"52 10","pages":"928-34"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11427-009-0122-4","citationCount":"7","resultStr":"{\"title\":\"Expression and subcellular localization of mechano-growth factor in osteoblasts under mechanical stretch.\",\"authors\":\"BingBing Zhang, ChengYu Xian, YanFeng Luo, YuanLiang Wang\",\"doi\":\"10.1007/s11427-009-0122-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechano-growth factor (MGF) is a stretch sensitive factor in myocytes, and it might also be produced by other mechanocytes under mechanical stimulation. In this study, both the mRNA and protein expression of MGF were detected in stretched osteoblasts. Quantitative analysis showed that a cyclic stretching stimulation caused a quick and sharp increase of MGF mRNA and protein expression from a low basal level under no stretch; the mRNA and protein levels respectively peaked in 6 and 12 h to 5 and 5.2 fold over the basal level and returned to normal by 24 h. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus. We concluded that cyclic stretching stimulation could induce MGF expression in osteoblasts in a pulsing fashion; and the nuclear distribution of MGF suggested that MGF might act in mechanocytes as an autocrine growth factor.</p>\",\"PeriodicalId\":49127,\"journal\":{\"name\":\"Science in China. Series C, Life Sciences / Chinese Academy of Sciences\",\"volume\":\"52 10\",\"pages\":\"928-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11427-009-0122-4\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China. Series C, Life Sciences / Chinese Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-009-0122-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China. Series C, Life Sciences / Chinese Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11427-009-0122-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/11/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Expression and subcellular localization of mechano-growth factor in osteoblasts under mechanical stretch.
Mechano-growth factor (MGF) is a stretch sensitive factor in myocytes, and it might also be produced by other mechanocytes under mechanical stimulation. In this study, both the mRNA and protein expression of MGF were detected in stretched osteoblasts. Quantitative analysis showed that a cyclic stretching stimulation caused a quick and sharp increase of MGF mRNA and protein expression from a low basal level under no stretch; the mRNA and protein levels respectively peaked in 6 and 12 h to 5 and 5.2 fold over the basal level and returned to normal by 24 h. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus. We concluded that cyclic stretching stimulation could induce MGF expression in osteoblasts in a pulsing fashion; and the nuclear distribution of MGF suggested that MGF might act in mechanocytes as an autocrine growth factor.