{"title":"稳定型严重缺血性左心室衰竭犬伺服控制模型。","authors":"Richard L Wagner, William B Hood, Peter A Howland","doi":"10.1007/s10558-009-9085-0","DOIUrl":null,"url":null,"abstract":"<p><p>Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"9 4","pages":"144-52"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-009-9085-0","citationCount":"0","resultStr":"{\"title\":\"A servo-controlled canine model of stable severe ischemic left ventricular failure.\",\"authors\":\"Richard L Wagner, William B Hood, Peter A Howland\",\"doi\":\"10.1007/s10558-009-9085-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.</p>\",\"PeriodicalId\":55275,\"journal\":{\"name\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"volume\":\"9 4\",\"pages\":\"144-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10558-009-9085-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10558-009-9085-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-009-9085-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A servo-controlled canine model of stable severe ischemic left ventricular failure.
Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.