迭代非顺序蛋白质结构比对。

Saeed Salem, Mohammed J Zaki
{"title":"迭代非顺序蛋白质结构比对。","authors":"Saeed Salem,&nbsp;Mohammed J Zaki","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Structural similarity between proteins gives us insights on the evolutionary relationship between proteins which have low sequence similarity. In this paper, we present a novel approach called STSA for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process, a superposition step and an alignment step, until convergence. Given two superposed structures, we propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of STSA alignments is evident in the high agreement it has with the reference alignments in the challenging-to-align RPIC set. Moreover, on a dataset of 4410 protein pairs selected from the CATH database, STSA has a high sensitivity and high specificity values and is competitive with state-of-the-art alignment methods and gives longer alignments with lower rmsd. The STSA software along with the data sets will be made available on line at http://www.cs.rpi.edu/-zaki/software/STSA.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"183-94"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative non-sequential protein structural alignment.\",\"authors\":\"Saeed Salem,&nbsp;Mohammed J Zaki\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural similarity between proteins gives us insights on the evolutionary relationship between proteins which have low sequence similarity. In this paper, we present a novel approach called STSA for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process, a superposition step and an alignment step, until convergence. Given two superposed structures, we propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of STSA alignments is evident in the high agreement it has with the reference alignments in the challenging-to-align RPIC set. Moreover, on a dataset of 4410 protein pairs selected from the CATH database, STSA has a high sensitivity and high specificity values and is competitive with state-of-the-art alignment methods and gives longer alignments with lower rmsd. The STSA software along with the data sets will be made available on line at http://www.cs.rpi.edu/-zaki/software/STSA.</p>\",\"PeriodicalId\":72665,\"journal\":{\"name\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"volume\":\"7 \",\"pages\":\"183-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质之间的结构相似性使我们对序列相似性较低的蛋白质之间的进化关系有了更深入的了解。在本文中,我们提出了一种称为STSA的非顺序成对结构对齐的新方法。从初始对齐开始,我们的方法迭代两个步骤的过程,一个叠加步骤和一个对齐步骤,直到收敛。在给定两个重叠结构的情况下,我们提出了一种贪心算法来构造顺序和非顺序对齐。STSA对准的质量在与具有挑战性的RPIC集中的参考对准的高度一致性中是显而易见的。此外,在从CATH数据库中选择的4410个蛋白质对数据集上,STSA具有高灵敏度和高特异性值,与最先进的比对方法相比具有竞争力,并提供较长的比对和较低的rmsd。STSA软件和数据集将在http://www.cs.rpi.edu/-zaki/software/STSA网站上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative non-sequential protein structural alignment.

Structural similarity between proteins gives us insights on the evolutionary relationship between proteins which have low sequence similarity. In this paper, we present a novel approach called STSA for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process, a superposition step and an alignment step, until convergence. Given two superposed structures, we propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of STSA alignments is evident in the high agreement it has with the reference alignments in the challenging-to-align RPIC set. Moreover, on a dataset of 4410 protein pairs selected from the CATH database, STSA has a high sensitivity and high specificity values and is competitive with state-of-the-art alignment methods and gives longer alignments with lower rmsd. The STSA software along with the data sets will be made available on line at http://www.cs.rpi.edu/-zaki/software/STSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信