风滚草:合成蛋白质马达。

Hfsp Journal Pub Date : 2009-06-01 Epub Date: 2009-04-28 DOI:10.2976/1.3111282
Elizabeth H C Bromley, Nathan J Kuwada, Martin J Zuckermann, Roberta Donadini, Laleh Samii, Gerhard A Blab, Gregory J Gemmen, Benjamin J Lopez, Paul M G Curmi, Nancy R Forde, Derek N Woolfson, Heiner Linke
{"title":"风滚草:合成蛋白质马达。","authors":"Elizabeth H C Bromley,&nbsp;Nathan J Kuwada,&nbsp;Martin J Zuckermann,&nbsp;Roberta Donadini,&nbsp;Laleh Samii,&nbsp;Gerhard A Blab,&nbsp;Gregory J Gemmen,&nbsp;Benjamin J Lopez,&nbsp;Paul M G Curmi,&nbsp;Nancy R Forde,&nbsp;Derek N Woolfson,&nbsp;Heiner Linke","doi":"10.2976/1.3111282","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the \"Tumbleweed.\" This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"3 3","pages":"204-12"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3111282","citationCount":"34","resultStr":"{\"title\":\"The Tumbleweed: towards a synthetic proteinmotor.\",\"authors\":\"Elizabeth H C Bromley,&nbsp;Nathan J Kuwada,&nbsp;Martin J Zuckermann,&nbsp;Roberta Donadini,&nbsp;Laleh Samii,&nbsp;Gerhard A Blab,&nbsp;Gregory J Gemmen,&nbsp;Benjamin J Lopez,&nbsp;Paul M G Curmi,&nbsp;Nancy R Forde,&nbsp;Derek N Woolfson,&nbsp;Heiner Linke\",\"doi\":\"10.2976/1.3111282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the \\\"Tumbleweed.\\\" This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"3 3\",\"pages\":\"204-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3111282\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3111282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3111282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/4/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

生物分子马达启发了基于核酸、小分子和无机纳米结构的人工纳米级马达和机器的设计和建造。然而,生物分子马达的高度复杂性和效率,以及它们特定的生物学功能,源于蛋白质构建块所提供的复杂性。在这里,我们讨论了一种新的自下而上的方法,通过考虑合成蛋白质马达的构建来理解生物马达。具体来说,我们提出了一种合成蛋白质马达的设计,它沿着线性轨道运动,被称为“风滚草”。这个概念使用三个离散的配体依赖的DNA结合域来执行周期性配体门控,沿着合成的DNA分子进行整流扩散。在这里,我们描述了如何从头开始的肽设计和分子生物学可以用来生产风滚草,我们用数值模拟来探索这种设计的基本运动操作。这种和更复杂的蛋白质马达的构建是一个令人兴奋的挑战,可能会增强我们对生物马达结构-功能关系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tumbleweed: towards a synthetic proteinmotor.

Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信