脊椎动物分割的延迟耦合理论。

Hfsp Journal Pub Date : 2009-01-01 Epub Date: 2008-12-10 DOI:10.2976/1.3027088
Luis G Morelli, Saúl Ares, Leah Herrgen, Christian Schröter, Frank Jülicher, Andrew C Oates
{"title":"脊椎动物分割的延迟耦合理论。","authors":"Luis G Morelli,&nbsp;Saúl Ares,&nbsp;Leah Herrgen,&nbsp;Christian Schröter,&nbsp;Frank Jülicher,&nbsp;Andrew C Oates","doi":"10.2976/1.3027088","DOIUrl":null,"url":null,"abstract":"<p><p>Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"3 1","pages":"55-66"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3027088","citationCount":"131","resultStr":"{\"title\":\"Delayed coupling theory of vertebrate segmentation.\",\"authors\":\"Luis G Morelli,&nbsp;Saúl Ares,&nbsp;Leah Herrgen,&nbsp;Christian Schröter,&nbsp;Frank Jülicher,&nbsp;Andrew C Oates\",\"doi\":\"10.2976/1.3027088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"3 1\",\"pages\":\"55-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3027088\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3027088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3027088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/12/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

细长的脊椎动物胚胎体轴有节奏和顺序地细分为形态体,是由一个称为分割时钟的振荡多细胞遗传网络控制的。这个时钟在体前中胚层(PSM)中运作,在PSM细胞的范围内产生振荡基因表达的动态条纹模式。这些空间模式、生物钟的集体周期和潜在的细胞水平的相互作用是如何联系在一起的,目前还不清楚。要解决这些问题,一个包含系统的地方和集体方面的时间和空间领域的理论是必不可少的。我们的延迟耦合理论通过将PSM表示为相位振荡器阵列来实现这一点,结合了四个关键要素:振荡器在PSM上减速的频率分布;相邻振子之间的耦合;耦合延迟;以及描述胚胎轴伸长的移动边界。该理论预测分割时钟的集体周期取决于延迟耦合。我们推导了PSM上模式波长的表达式,并展示了如何使用它来拟合动态野生型基因表达模式,揭示了控制系统中振荡器时空组织的参数的定量值。我们的理论可以用来分析实验扰动,从而确定参与分割的基因的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delayed coupling theory of vertebrate segmentation.

Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信