{"title":"甘氨酸转运抑制剂治疗精神分裂症:症状和疾病改变。","authors":"Daniel C Javitt","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a severe neuropsychiatric disorder for which there is no adequate current treatment. Recent theories about the molecular basis of schizophrenia focus on disturbances of glutamatergic neurotransmission, particularly at NMDA-type glutamate receptors (NMDARs). NMDARs are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine transporter type 1 (GlyT1), which serves to maintain low subsaturating glycine levels in the vicinity of the NMDAR. Therefore, one proposed approach to the treatment of schizophrenia is via the inhibition of GlyT1-mediated transport. During the past decade, several well-tolerated, high-affinity glycine transport inhibitors (GTIs) have been developed that demonstrate the ability to potentiate NMDAR-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GTI. Issues related to clinical proof-of-concept studies with high-affinity GTIs in schizophrenia are discussed in this review.</p>","PeriodicalId":10809,"journal":{"name":"Current opinion in drug discovery & development","volume":"12 4","pages":"468-78"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification.\",\"authors\":\"Daniel C Javitt\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is a severe neuropsychiatric disorder for which there is no adequate current treatment. Recent theories about the molecular basis of schizophrenia focus on disturbances of glutamatergic neurotransmission, particularly at NMDA-type glutamate receptors (NMDARs). NMDARs are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine transporter type 1 (GlyT1), which serves to maintain low subsaturating glycine levels in the vicinity of the NMDAR. Therefore, one proposed approach to the treatment of schizophrenia is via the inhibition of GlyT1-mediated transport. During the past decade, several well-tolerated, high-affinity glycine transport inhibitors (GTIs) have been developed that demonstrate the ability to potentiate NMDAR-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GTI. Issues related to clinical proof-of-concept studies with high-affinity GTIs in schizophrenia are discussed in this review.</p>\",\"PeriodicalId\":10809,\"journal\":{\"name\":\"Current opinion in drug discovery & development\",\"volume\":\"12 4\",\"pages\":\"468-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in drug discovery & development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in drug discovery & development","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification.
Schizophrenia is a severe neuropsychiatric disorder for which there is no adequate current treatment. Recent theories about the molecular basis of schizophrenia focus on disturbances of glutamatergic neurotransmission, particularly at NMDA-type glutamate receptors (NMDARs). NMDARs are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine transporter type 1 (GlyT1), which serves to maintain low subsaturating glycine levels in the vicinity of the NMDAR. Therefore, one proposed approach to the treatment of schizophrenia is via the inhibition of GlyT1-mediated transport. During the past decade, several well-tolerated, high-affinity glycine transport inhibitors (GTIs) have been developed that demonstrate the ability to potentiate NMDAR-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GTI. Issues related to clinical proof-of-concept studies with high-affinity GTIs in schizophrenia are discussed in this review.