用于非目标GC-MS数据分析的自动监督学习管道

IF 2.5 Q1 Chemistry
Kimmo Sirén , Ulrich Fischer , Jochen Vestner
{"title":"用于非目标GC-MS数据分析的自动监督学习管道","authors":"Kimmo Sirén ,&nbsp;Ulrich Fischer ,&nbsp;Jochen Vestner","doi":"10.1016/j.acax.2019.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Non-targeted analysis is nowadays applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. Conventional processing strategies for GC-MS data include baseline correction, feature detection, and retention time alignment before multivariate modeling. These techniques can be prone to errors and therefore time-consuming manual corrections are generally necessary. We introduce here a novel fully automated approach to non-targeted GC-MS data processing. This new approach avoids feature extraction and retention time alignment. Supervised machine learning on decomposed tensors of segmented chromatographic raw data signal is used to rank regions in the chromatograms contributing to differentiation between sample classes. The performance of this novel data analysis approach is demonstrated on three published datasets.</p></div>","PeriodicalId":241,"journal":{"name":"Analytica Chimica Acta: X","volume":"1 ","pages":"Article 100005"},"PeriodicalIF":2.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.acax.2019.100005","citationCount":"6","resultStr":"{\"title\":\"Automated supervised learning pipeline for non-targeted GC-MS data analysis\",\"authors\":\"Kimmo Sirén ,&nbsp;Ulrich Fischer ,&nbsp;Jochen Vestner\",\"doi\":\"10.1016/j.acax.2019.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-targeted analysis is nowadays applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. Conventional processing strategies for GC-MS data include baseline correction, feature detection, and retention time alignment before multivariate modeling. These techniques can be prone to errors and therefore time-consuming manual corrections are generally necessary. We introduce here a novel fully automated approach to non-targeted GC-MS data processing. This new approach avoids feature extraction and retention time alignment. Supervised machine learning on decomposed tensors of segmented chromatographic raw data signal is used to rank regions in the chromatograms contributing to differentiation between sample classes. The performance of this novel data analysis approach is demonstrated on three published datasets.</p></div>\",\"PeriodicalId\":241,\"journal\":{\"name\":\"Analytica Chimica Acta: X\",\"volume\":\"1 \",\"pages\":\"Article 100005\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.acax.2019.100005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590134619300015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590134619300015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 6

摘要

目前,非靶向分析已广泛应用于分析化学的各个领域,如代谢组学、环境分析和食品分析等。传统的GC-MS数据处理策略包括基线校正、特征检测和多变量建模前的保留时间对齐。这些技术可能容易出错,因此通常需要花费大量时间进行手动更正。我们在这里介绍了一种全新的全自动非靶向GC-MS数据处理方法。这种新方法避免了特征提取和保持时间对齐。对分割色谱原始数据信号的分解张量进行监督式机器学习,对色谱图中的区域进行排序,有助于区分样品类别。在三个已发布的数据集上证明了这种新颖数据分析方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated supervised learning pipeline for non-targeted GC-MS data analysis

Automated supervised learning pipeline for non-targeted GC-MS data analysis

Non-targeted analysis is nowadays applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. Conventional processing strategies for GC-MS data include baseline correction, feature detection, and retention time alignment before multivariate modeling. These techniques can be prone to errors and therefore time-consuming manual corrections are generally necessary. We introduce here a novel fully automated approach to non-targeted GC-MS data processing. This new approach avoids feature extraction and retention time alignment. Supervised machine learning on decomposed tensors of segmented chromatographic raw data signal is used to rank regions in the chromatograms contributing to differentiation between sample classes. The performance of this novel data analysis approach is demonstrated on three published datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytica Chimica Acta: X
Analytica Chimica Acta: X Chemistry-Analytical Chemistry
自引率
0.00%
发文量
3
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信