湍流预混氢-空气火焰在局部火焰-火焰相互作用中火焰速度增强的研究

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Yuvraj , Yazdan Naderzadeh Ardebili , Wonsik Song , Hong G. Im , Chung K. Law , Swetaprovo Chaudhuri
{"title":"湍流预混氢-空气火焰在局部火焰-火焰相互作用中火焰速度增强的研究","authors":"Yuvraj ,&nbsp;Yazdan Naderzadeh Ardebili ,&nbsp;Wonsik Song ,&nbsp;Hong G. Im ,&nbsp;Chung K. Law ,&nbsp;Swetaprovo Chaudhuri","doi":"10.1016/j.combustflame.2023.113017","DOIUrl":null,"url":null,"abstract":"<div><p>Local flame displacement speed <span><math><msub><mi>S</mi><mi>d</mi></msub></math></span><span> of a turbulent premixed flame is of fundamental and practical interest. For H</span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span><span>-air flames, the interest is further accentuated given the recent drive towards the development of zero-carbon combustors<span> for both power and aircraft engine applications. The present study investigates several three-dimensional Direct Numerical Simulation (3D DNS) cases of premixed H</span></span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>-air turbulent flames to theoretically model the <span><math><msub><mi>S</mi><mi>d</mi></msub></math></span><span> at negative curvatures, building upon recent works. Two of the four DNS cases presented are simulated at atmospheric pressure and two at elevated pressure. The DNS cases at different turbulence Reynolds numbers (</span><span><math><mrow><mi>R</mi><msub><mi>e</mi><mi>t</mi></msub></mrow></math></span>) and Karlovitz numbers (<span><math><mrow><mi>K</mi><mi>a</mi></mrow></math></span>) are generated using detailed chemistry. It has been shown in the previous studies that at atmospheric pressure, the density-weighted flame displacement speed <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> is enhanced significantly over its laminar value (<span><math><msub><mi>S</mi><mi>L</mi></msub></math></span>) at large negative curvature <span><math><mi>κ</mi></math></span><span> due to flame-flame interactions. The current work justifiably employs an imploding cylindrical laminar flame configuration to represent the local flame surfaces undergoing flame-flame interaction in a 3D turbulent flame. Therefore, to acquire a deep understanding of the interacting flame dynamics at large negative curvatures, one-dimensional (1D) simulations of an inwardly propagating cylindrical H</span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>-air laminar premixed flame, with detailed chemistry at the corresponding atmospheric and elevated pressure conditions are performed. In particular, the 1D simulations emphasized the transient nature of the flame structure during these interactions. Based on the insights from the 1D simulations, we utilize an analytical approach to model the <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> at these regions of extreme negative <span><math><mi>κ</mi></math></span><span> of the 3D DNS. The analytical approach is formulated to include the effect of variable density, convection and the inner reaction zone motion. The joint probability density function (JPDF) of </span><span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> and <span><math><mi>κ</mi></math></span> and the corresponding conditional averages obtained from 3D DNS showed clear negative correlation between <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> and <span><math><mi>κ</mi></math></span> at all pressures. The obtained model successfully predicts the variation of <span><math><mrow><mo>〈</mo><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover><msub><mo>|</mo><mi>κ</mi></msub><mo>〉</mo></mrow></math></span> with <span><math><mi>κ</mi></math></span> for the regions on the flame surface with large negative curvature (<span><math><mrow><mi>κ</mi><msub><mi>δ</mi><mi>L</mi></msub><mspace></mspace><mo>≪</mo><mspace></mspace><mo>−</mo><mn>1</mn></mrow></math></span>) at atmospheric as well as at elevated pressure, with good accuracy. This showed that the 1D cylindrical, interacting flame model is a fruitful representation of a local flame-flame interaction that persists in a 3D turbulent flame, and is able to capture the intrinsically transient dynamics of the local flame-flame interaction. The 3D DNS cases further showed that even in the non-interacting state at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, on average <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> can deviate from <span><math><msub><mi>S</mi><mi>L</mi></msub></math></span>. <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span> is a manifestation of the internal flame structure, controlled by turbulence transport in the large <span><math><mrow><mi>K</mi><mi>a</mi></mrow></math></span> regime. Therefore, the correlation of <span><math><mrow><mrow><mo>〈</mo><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover><mo>〉</mo></mrow><mo>/</mo><msub><mi>S</mi><mi>L</mi></msub></mrow></math></span> with the the normalized gradient of the progress variable, <span><math><mrow><mo>〈</mo><mo>|</mo><mover><mrow><mi>∇</mi><mi>c</mi></mrow><mo>^</mo></mover><msub><mo>|</mo><msub><mi>c</mi><mn>0</mn></msub></msub><mo>〉</mo></mrow></math></span> at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span> is explored.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"257 ","pages":"Article 113017"},"PeriodicalIF":5.8000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On flame speed enhancement in turbulent premixed hydrogen-air flames during local flame-flame interaction\",\"authors\":\"Yuvraj ,&nbsp;Yazdan Naderzadeh Ardebili ,&nbsp;Wonsik Song ,&nbsp;Hong G. Im ,&nbsp;Chung K. Law ,&nbsp;Swetaprovo Chaudhuri\",\"doi\":\"10.1016/j.combustflame.2023.113017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Local flame displacement speed <span><math><msub><mi>S</mi><mi>d</mi></msub></math></span><span> of a turbulent premixed flame is of fundamental and practical interest. For H</span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span><span>-air flames, the interest is further accentuated given the recent drive towards the development of zero-carbon combustors<span> for both power and aircraft engine applications. The present study investigates several three-dimensional Direct Numerical Simulation (3D DNS) cases of premixed H</span></span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>-air turbulent flames to theoretically model the <span><math><msub><mi>S</mi><mi>d</mi></msub></math></span><span> at negative curvatures, building upon recent works. Two of the four DNS cases presented are simulated at atmospheric pressure and two at elevated pressure. The DNS cases at different turbulence Reynolds numbers (</span><span><math><mrow><mi>R</mi><msub><mi>e</mi><mi>t</mi></msub></mrow></math></span>) and Karlovitz numbers (<span><math><mrow><mi>K</mi><mi>a</mi></mrow></math></span>) are generated using detailed chemistry. It has been shown in the previous studies that at atmospheric pressure, the density-weighted flame displacement speed <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> is enhanced significantly over its laminar value (<span><math><msub><mi>S</mi><mi>L</mi></msub></math></span>) at large negative curvature <span><math><mi>κ</mi></math></span><span> due to flame-flame interactions. The current work justifiably employs an imploding cylindrical laminar flame configuration to represent the local flame surfaces undergoing flame-flame interaction in a 3D turbulent flame. Therefore, to acquire a deep understanding of the interacting flame dynamics at large negative curvatures, one-dimensional (1D) simulations of an inwardly propagating cylindrical H</span><span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>-air laminar premixed flame, with detailed chemistry at the corresponding atmospheric and elevated pressure conditions are performed. In particular, the 1D simulations emphasized the transient nature of the flame structure during these interactions. Based on the insights from the 1D simulations, we utilize an analytical approach to model the <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> at these regions of extreme negative <span><math><mi>κ</mi></math></span><span> of the 3D DNS. The analytical approach is formulated to include the effect of variable density, convection and the inner reaction zone motion. The joint probability density function (JPDF) of </span><span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> and <span><math><mi>κ</mi></math></span> and the corresponding conditional averages obtained from 3D DNS showed clear negative correlation between <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> and <span><math><mi>κ</mi></math></span> at all pressures. The obtained model successfully predicts the variation of <span><math><mrow><mo>〈</mo><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover><msub><mo>|</mo><mi>κ</mi></msub><mo>〉</mo></mrow></math></span> with <span><math><mi>κ</mi></math></span> for the regions on the flame surface with large negative curvature (<span><math><mrow><mi>κ</mi><msub><mi>δ</mi><mi>L</mi></msub><mspace></mspace><mo>≪</mo><mspace></mspace><mo>−</mo><mn>1</mn></mrow></math></span>) at atmospheric as well as at elevated pressure, with good accuracy. This showed that the 1D cylindrical, interacting flame model is a fruitful representation of a local flame-flame interaction that persists in a 3D turbulent flame, and is able to capture the intrinsically transient dynamics of the local flame-flame interaction. The 3D DNS cases further showed that even in the non-interacting state at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, on average <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> can deviate from <span><math><msub><mi>S</mi><mi>L</mi></msub></math></span>. <span><math><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover></math></span> at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span> is a manifestation of the internal flame structure, controlled by turbulence transport in the large <span><math><mrow><mi>K</mi><mi>a</mi></mrow></math></span> regime. Therefore, the correlation of <span><math><mrow><mrow><mo>〈</mo><mover><mrow><msub><mi>S</mi><mi>d</mi></msub></mrow><mo>˜</mo></mover><mo>〉</mo></mrow><mo>/</mo><msub><mi>S</mi><mi>L</mi></msub></mrow></math></span> with the the normalized gradient of the progress variable, <span><math><mrow><mo>〈</mo><mo>|</mo><mover><mrow><mi>∇</mi><mi>c</mi></mrow><mo>^</mo></mover><msub><mo>|</mo><msub><mi>c</mi><mn>0</mn></msub></msub><mo>〉</mo></mrow></math></span> at <span><math><mrow><mi>κ</mi><mo>=</mo><mn>0</mn></mrow></math></span> is explored.</p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"257 \",\"pages\":\"Article 113017\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218023003929\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218023003929","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

湍流预混火焰的局部火焰位移速度Sd具有重要的基础和实际意义。对于h2 -空气火焰,考虑到最近在动力和飞机发动机应用中对零碳燃烧器的发展的推动,人们的兴趣进一步增强。本研究在最近工作的基础上,研究了几种预混h2 -空气湍流火焰的三维直接数值模拟(3D DNS)情况,以理论模拟负曲率下的Sd。所提出的四种DNS情况中,有两种是在常压下模拟的,另外两种是在高压下模拟的。在不同湍流雷诺数(Ret)和Karlovitz数(Ka)下,用详细的化学方法生成了DNS情况。先前的研究表明,在常压下,由于火焰-火焰相互作用,在大负曲率κ下,密度加权火焰位移速度Sd≈比其层流值(SL)显著增强。目前的工作合理地采用内爆圆柱形层流火焰结构来表示三维湍流火焰中火焰-火焰相互作用的局部火焰表面。因此,为了深入了解大负曲率下相互作用的火焰动力学,我们对向内传播的圆柱形h2 -空气层流预混火焰进行了一维(1D)模拟,并在相应的大气和高压条件下进行了详细的化学模拟。特别是,一维模拟强调了这些相互作用过程中火焰结构的瞬态性质。基于一维模拟的见解,我们利用分析方法模拟了这些3D DNS极端负κ区域的Sd ~。该分析方法考虑了变密度、对流和内部反应区运动的影响。三维DNS得到的Sd ~和κ的联合概率密度函数(JPDF)和相应的条件平均值显示,在所有压力下Sd ~和κ之间存在明显的负相关。所获得的模型成功地预测了在大气和高压下火焰表面负曲率大的区域(κδ l≪−1)< Sd ~ |κ >随κ的变化,精度很高。这表明,一维圆柱形相互作用火焰模型是三维湍流火焰中持续存在的局部火焰-火焰相互作用的有效表示,并且能够捕获局部火焰-火焰相互作用的本质瞬态动力学。三维DNS进一步表明,即使在κ=0的非相互作用状态下,Sd≈也会偏离SL, κ=0时的Sd≈是大Ka区湍流输运控制的内火焰结构的表现。因此,研究了< Sd≈> /SL与进度变量< |∇c^|c0 >在κ=0时的归一化梯度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On flame speed enhancement in turbulent premixed hydrogen-air flames during local flame-flame interaction

Local flame displacement speed Sd of a turbulent premixed flame is of fundamental and practical interest. For H2-air flames, the interest is further accentuated given the recent drive towards the development of zero-carbon combustors for both power and aircraft engine applications. The present study investigates several three-dimensional Direct Numerical Simulation (3D DNS) cases of premixed H2-air turbulent flames to theoretically model the Sd at negative curvatures, building upon recent works. Two of the four DNS cases presented are simulated at atmospheric pressure and two at elevated pressure. The DNS cases at different turbulence Reynolds numbers (Ret) and Karlovitz numbers (Ka) are generated using detailed chemistry. It has been shown in the previous studies that at atmospheric pressure, the density-weighted flame displacement speed Sd˜ is enhanced significantly over its laminar value (SL) at large negative curvature κ due to flame-flame interactions. The current work justifiably employs an imploding cylindrical laminar flame configuration to represent the local flame surfaces undergoing flame-flame interaction in a 3D turbulent flame. Therefore, to acquire a deep understanding of the interacting flame dynamics at large negative curvatures, one-dimensional (1D) simulations of an inwardly propagating cylindrical H2-air laminar premixed flame, with detailed chemistry at the corresponding atmospheric and elevated pressure conditions are performed. In particular, the 1D simulations emphasized the transient nature of the flame structure during these interactions. Based on the insights from the 1D simulations, we utilize an analytical approach to model the Sd˜ at these regions of extreme negative κ of the 3D DNS. The analytical approach is formulated to include the effect of variable density, convection and the inner reaction zone motion. The joint probability density function (JPDF) of Sd˜ and κ and the corresponding conditional averages obtained from 3D DNS showed clear negative correlation between Sd˜ and κ at all pressures. The obtained model successfully predicts the variation of Sd˜|κ with κ for the regions on the flame surface with large negative curvature (κδL1) at atmospheric as well as at elevated pressure, with good accuracy. This showed that the 1D cylindrical, interacting flame model is a fruitful representation of a local flame-flame interaction that persists in a 3D turbulent flame, and is able to capture the intrinsically transient dynamics of the local flame-flame interaction. The 3D DNS cases further showed that even in the non-interacting state at κ=0, on average Sd˜ can deviate from SL. Sd˜ at κ=0 is a manifestation of the internal flame structure, controlled by turbulence transport in the large Ka regime. Therefore, the correlation of Sd˜/SL with the the normalized gradient of the progress variable, |c^|c0 at κ=0 is explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信