高斯过程回归中超参数估计的物理惩罚

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinhyeun Kim , Christopher Luettgen , Kamran Paynabar , Fani Boukouvala
{"title":"高斯过程回归中超参数估计的物理惩罚","authors":"Jinhyeun Kim ,&nbsp;Christopher Luettgen ,&nbsp;Kamran Paynabar ,&nbsp;Fani Boukouvala","doi":"10.1016/j.compchemeng.2023.108320","DOIUrl":null,"url":null,"abstract":"<div><p>In Gaussian Process Regression (GPR), hyperparameters are often estimated by maximizing the marginal likelihood function. However, this data-dominant hyperparameter estimation process can lead to poor extrapolation performance and often violates known physics, especially in sparse data scenarios. In this paper, we embed physics-based knowledge through penalization of the marginal likelihood objective function and study the effect of this new objective on consistency of optimal hyperparameters and quality of GPR fit. Three case studies are presented, where physics-based knowledge is available in the form of linear Partial Differential Equations (PDEs), while initial or boundary conditions are not known so direct forward simulation of the model is challenging. The results reveal that the new hyperparameter set obtained from the augmented marginal likelihood function can improve the prediction performance of GPR, reduce the violation of the underlying physics, and mitigate overfitting problems.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108320"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based Penalization for Hyperparameter Estimation in Gaussian Process Regression\",\"authors\":\"Jinhyeun Kim ,&nbsp;Christopher Luettgen ,&nbsp;Kamran Paynabar ,&nbsp;Fani Boukouvala\",\"doi\":\"10.1016/j.compchemeng.2023.108320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Gaussian Process Regression (GPR), hyperparameters are often estimated by maximizing the marginal likelihood function. However, this data-dominant hyperparameter estimation process can lead to poor extrapolation performance and often violates known physics, especially in sparse data scenarios. In this paper, we embed physics-based knowledge through penalization of the marginal likelihood objective function and study the effect of this new objective on consistency of optimal hyperparameters and quality of GPR fit. Three case studies are presented, where physics-based knowledge is available in the form of linear Partial Differential Equations (PDEs), while initial or boundary conditions are not known so direct forward simulation of the model is challenging. The results reveal that the new hyperparameter set obtained from the augmented marginal likelihood function can improve the prediction performance of GPR, reduce the violation of the underlying physics, and mitigate overfitting problems.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"178 \",\"pages\":\"Article 108320\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423001904\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001904","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在高斯过程回归(GPR)中,通常通过最大化边际似然函数来估计超参数。然而,这种以数据为主导的超参数估计过程可能导致较差的外推性能,并且经常违反已知的物理特性,特别是在稀疏数据场景中。本文通过惩罚边际似然目标函数嵌入基于物理的知识,并研究了这种新目标对最优超参数一致性和探地雷达拟合质量的影响。提出了三个案例研究,其中基于物理的知识以线性偏微分方程(PDEs)的形式可用,而初始或边界条件尚不清楚,因此模型的直接正演模拟具有挑战性。结果表明,由增广的边际似然函数得到的新超参数集可以提高探地雷达的预测性能,减少对底层物理的违背,缓解过拟合问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-based Penalization for Hyperparameter Estimation in Gaussian Process Regression

In Gaussian Process Regression (GPR), hyperparameters are often estimated by maximizing the marginal likelihood function. However, this data-dominant hyperparameter estimation process can lead to poor extrapolation performance and often violates known physics, especially in sparse data scenarios. In this paper, we embed physics-based knowledge through penalization of the marginal likelihood objective function and study the effect of this new objective on consistency of optimal hyperparameters and quality of GPR fit. Three case studies are presented, where physics-based knowledge is available in the form of linear Partial Differential Equations (PDEs), while initial or boundary conditions are not known so direct forward simulation of the model is challenging. The results reveal that the new hyperparameter set obtained from the augmented marginal likelihood function can improve the prediction performance of GPR, reduce the violation of the underlying physics, and mitigate overfitting problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信