萘酞菁锂晶体的分子填料和磁性能:空心通道对分子氧的渗透性和顺磁敏感性。

Ramasamy P Pandian, Michelle Dolgos, Camelia Marginean, Patrick M Woodward, P Chris Hammel, Periakaruppan T Manoharan, Periannan Kuppusamy
{"title":"萘酞菁锂晶体的分子填料和磁性能:空心通道对分子氧的渗透性和顺磁敏感性。","authors":"Ramasamy P Pandian, Michelle Dolgos, Camelia Marginean, Patrick M Woodward, P Chris Hammel, Periakaruppan T Manoharan, Periannan Kuppusamy","doi":"10.1039/b901886g","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å(2) in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å(2)) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO(2) with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"19 24","pages":"4138-4147"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756769/pdf/nihms-132942.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen.\",\"authors\":\"Ramasamy P Pandian, Michelle Dolgos, Camelia Marginean, Patrick M Woodward, P Chris Hammel, Periakaruppan T Manoharan, Periannan Kuppusamy\",\"doi\":\"10.1039/b901886g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å(2) in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å(2)) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO(2) with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy.</p>\",\"PeriodicalId\":16297,\"journal\":{\"name\":\"Journal of Materials Chemistry\",\"volume\":\"19 24\",\"pages\":\"4138-4147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756769/pdf/nihms-132942.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/b901886g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/b901886g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种萘酞菁锂(LiNc)自由基探针的合成、结构框架、磁性和氧传感特性。通过化学方法合成了微晶粉末状的 LiNc,并通过电子顺磁共振(EPR)光谱、磁感应强度、X 射线粉末衍射分析和质谱分析对其进行了表征。X 射线粉末衍射研究揭示了一种结构框架,它具有与堆积方向平行的中空长通道。在垂直于通道长度的二维平面上,通道的尺寸约为 5.0 × 5.4 Å(2),使氧分子(2.9 × 3.9 Å(2))能够通过通道进行扩散。在缺氧条件下,粉末状镍镉锂表现出单条尖锐的 EPR 线,室温下的峰峰线宽为 630 mG。该线宽对周围的分子氧很敏感,显示出 pO(2) 的线性增加,氧敏感度为每毫米汞柱 31.2 mG。LiNc 微晶可进一步制备成纳米尺寸的晶体,而不会丧失其高度的氧传感特性。镍镉锂微晶的磁性能(如 EPR 线宽、EPR 强度和磁感应强度)的热变化揭示了存在两种不同温度下的磁耦合,因此柱状堆积也不同,两者都是一维反铁磁链,但交换耦合常数的大小不同。在 ∼50 K 的温度下,LiNc 晶体会发生可逆相变。微米和纳米尺寸的镍镉锂晶体具有高度的氧灵敏度和出色的稳定性,可利用 EPR 光谱精确测量生物系统中的氧浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen.

The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å(2) in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å(2)) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO(2) with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry
Journal of Materials Chemistry 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
1.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信