中间纤维蛋白在神经系统疾病发展中的作用。

Matthew W Kemp, Kay E Davies
{"title":"中间纤维蛋白在神经系统疾病发展中的作用。","authors":"Matthew W Kemp,&nbsp;Kay E Davies","doi":"10.1615/critrevneurobiol.v19.i1.10","DOIUrl":null,"url":null,"abstract":"<p><p>Intermediate filaments (IFs), along with microfilaments and microtubules, comprise the three intracellular filaments identified in eukaryotic cells to date. Together, these three distinct filamentous networks act in a dynamic and tightly interconnected fashion to comprise the eukaryotic cytoskeleton. As such, they are involved in a number of essential and diverse cellular processes, including division, molecular transport, and the maintenance of structural integrity in the face of mechanical stress. Underscoring the ubiquitous importance of IF proteins to the normal function of cellular systems, mutations in IF-encoding genes that affect the structure, function, or regulation of these proteins are commonly found in association with a range of heritable genetic diseases. The diversity of IF-related disease is indeed as wide as the distribution of IF proteins themselves, effecting the development of a broad range of disease phenotypes. Here we review, with specific reference to recent developments in the correlation of genotype with phenotype, how the perturbation of IF networks can elicit the development of human neurological disease.</p>","PeriodicalId":10778,"journal":{"name":"Critical reviews in neurobiology","volume":"19 1","pages":"1-27"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The role of intermediate filament proteins in the development of neurological disease.\",\"authors\":\"Matthew W Kemp,&nbsp;Kay E Davies\",\"doi\":\"10.1615/critrevneurobiol.v19.i1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intermediate filaments (IFs), along with microfilaments and microtubules, comprise the three intracellular filaments identified in eukaryotic cells to date. Together, these three distinct filamentous networks act in a dynamic and tightly interconnected fashion to comprise the eukaryotic cytoskeleton. As such, they are involved in a number of essential and diverse cellular processes, including division, molecular transport, and the maintenance of structural integrity in the face of mechanical stress. Underscoring the ubiquitous importance of IF proteins to the normal function of cellular systems, mutations in IF-encoding genes that affect the structure, function, or regulation of these proteins are commonly found in association with a range of heritable genetic diseases. The diversity of IF-related disease is indeed as wide as the distribution of IF proteins themselves, effecting the development of a broad range of disease phenotypes. Here we review, with specific reference to recent developments in the correlation of genotype with phenotype, how the perturbation of IF networks can elicit the development of human neurological disease.</p>\",\"PeriodicalId\":10778,\"journal\":{\"name\":\"Critical reviews in neurobiology\",\"volume\":\"19 1\",\"pages\":\"1-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/critrevneurobiol.v19.i1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/critrevneurobiol.v19.i1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

中间丝(if),与微丝和微管一起,组成了迄今为止在真核细胞中鉴定的三种细胞内丝。总之,这三种不同的丝状网络以一种动态的、紧密相连的方式起作用,构成了真核细胞骨架。因此,它们参与了许多基本的和多样化的细胞过程,包括分裂、分子运输和面对机械应力时结构完整性的维持。强调干扰素蛋白对细胞系统正常功能的普遍重要性,干扰素编码基因的突变影响这些蛋白的结构、功能或调控,通常与一系列遗传性遗传病有关。干扰素相关疾病的多样性确实与干扰素蛋白本身的分布一样广泛,影响着多种疾病表型的发展。在这里,我们回顾了基因型与表型相关性的最新进展,IF网络的扰动如何引发人类神经系统疾病的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of intermediate filament proteins in the development of neurological disease.

Intermediate filaments (IFs), along with microfilaments and microtubules, comprise the three intracellular filaments identified in eukaryotic cells to date. Together, these three distinct filamentous networks act in a dynamic and tightly interconnected fashion to comprise the eukaryotic cytoskeleton. As such, they are involved in a number of essential and diverse cellular processes, including division, molecular transport, and the maintenance of structural integrity in the face of mechanical stress. Underscoring the ubiquitous importance of IF proteins to the normal function of cellular systems, mutations in IF-encoding genes that affect the structure, function, or regulation of these proteins are commonly found in association with a range of heritable genetic diseases. The diversity of IF-related disease is indeed as wide as the distribution of IF proteins themselves, effecting the development of a broad range of disease phenotypes. Here we review, with specific reference to recent developments in the correlation of genotype with phenotype, how the perturbation of IF networks can elicit the development of human neurological disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信