稳定过滤器支持的双层脂质膜(BLMs)用于临床,制药,环境和工业兴趣化合物的自动流量监测。

D P Nikolelis, C G Siontorou
{"title":"稳定过滤器支持的双层脂质膜(BLMs)用于临床,制药,环境和工业兴趣化合物的自动流量监测。","authors":"D P Nikolelis,&nbsp;C G Siontorou","doi":"10.1155/S1463924697000011","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures.</p>","PeriodicalId":22600,"journal":{"name":"The Journal of Automatic Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S1463924697000011","citationCount":"8","resultStr":"{\"title\":\"Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest.\",\"authors\":\"D P Nikolelis,&nbsp;C G Siontorou\",\"doi\":\"10.1155/S1463924697000011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures.</p>\",\"PeriodicalId\":22600,\"journal\":{\"name\":\"The Journal of Automatic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S1463924697000011\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Automatic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S1463924697000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Automatic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S1463924697000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了基于双层脂质膜(BLMs)的电化学生物传感器在水解酶、抗原和三嗪类除草剂底物的自动、快速、灵敏的流量监测中的应用结果。由卵磷脂酰胆碱(卵磷脂)和双棕榈酰磷脂酸(DPPA)的混合物组成的BLMs被支持在超滤膜(玻璃微纤维或聚碳酸酯过滤器)上,这被发现增强了它们在流动实验中的稳定性。将蛋白质(酶、抗体)在空气-电解质界面处掺入漂浮的脂质基质中,然后使用铸造程序将脂质输送到过滤器支架上以形成BLM。将分析物注入载体电解质溶液的流动流中,得到一个电流瞬态信号,其大小与分析物浓度相关。水解酶反应的底物(乙酰胆碱、尿素和青霉素)可以在微摩尔水平上以220个样品/h的最高速率检测,而抗原(甲状腺素)和三嗪类除草剂(西马津、阿特拉津和丙嗪)可以在纳摩尔水平上在不到2 min的时间内监测。除草剂获得的瞬态响应时间增加到西马津的数量级。阿特拉津和丙嗪可以对混合物中的三嗪进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest.

This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信