Erin A Jones, Sung-Wook Jang, Gennifer M Mager, Li-Wei Chang, Rajini Srinivasan, Nolan G Gokey, Rebecca M Ward, Rakesh Nagarajan, John Svaren
{"title":"Sox10 和 Egr2 在髓鞘基因调控中的相互作用","authors":"Erin A Jones, Sung-Wook Jang, Gennifer M Mager, Li-Wei Chang, Rajini Srinivasan, Nolan G Gokey, Rebecca M Ward, Rakesh Nagarajan, John Svaren","doi":"10.1017/S1740925X08000173","DOIUrl":null,"url":null,"abstract":"<p><p>Myelination in the PNS is accompanied by a large induction of the myelin protein zero (Mpz) gene to produce the most abundant component in peripheral myelin. Analyses of knockout mice have shown that the EGR2/Krox20 and SOX10 transcription factors are required for Mpz expression. Our recent work has shown that the dominant EGR2 mutations associated with human peripheral neuropathies cause disruption of EGR2/SOX10 synergy at specific sites, including a conserved enhancer element in the first intron of the Mpz gene. Further investigation of Egr2/Sox10 interactions reveals that activation of the Mpz intron element by Egr2 requires both Sox10-binding sites. In addition, both Egr1 and Egr3 cooperate with Sox10 to activate this element, which indicates that this capacity is conserved among Egr family members. Finally, a conserved composite structure of Egr2/Sox10-binding sites in the genes encoding Mpz, myelin-associated glycoprotein and myelin basic protein genes was used to screen for similar modules in other myelin genes, revealing a potential regulatory element in the periaxin gene. Overall, these results elucidate a working model for developmental regulation of Mpz expression, several facets of which extend to regulation of other peripheral myelin genes.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":"3 4","pages":"377-87"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605513/pdf/nihms77039.pdf","citationCount":"0","resultStr":"{\"title\":\"Interactions of Sox10 and Egr2 in myelin gene regulation.\",\"authors\":\"Erin A Jones, Sung-Wook Jang, Gennifer M Mager, Li-Wei Chang, Rajini Srinivasan, Nolan G Gokey, Rebecca M Ward, Rakesh Nagarajan, John Svaren\",\"doi\":\"10.1017/S1740925X08000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myelination in the PNS is accompanied by a large induction of the myelin protein zero (Mpz) gene to produce the most abundant component in peripheral myelin. Analyses of knockout mice have shown that the EGR2/Krox20 and SOX10 transcription factors are required for Mpz expression. Our recent work has shown that the dominant EGR2 mutations associated with human peripheral neuropathies cause disruption of EGR2/SOX10 synergy at specific sites, including a conserved enhancer element in the first intron of the Mpz gene. Further investigation of Egr2/Sox10 interactions reveals that activation of the Mpz intron element by Egr2 requires both Sox10-binding sites. In addition, both Egr1 and Egr3 cooperate with Sox10 to activate this element, which indicates that this capacity is conserved among Egr family members. Finally, a conserved composite structure of Egr2/Sox10-binding sites in the genes encoding Mpz, myelin-associated glycoprotein and myelin basic protein genes was used to screen for similar modules in other myelin genes, revealing a potential regulatory element in the periaxin gene. Overall, these results elucidate a working model for developmental regulation of Mpz expression, several facets of which extend to regulation of other peripheral myelin genes.</p>\",\"PeriodicalId\":19153,\"journal\":{\"name\":\"Neuron glia biology\",\"volume\":\"3 4\",\"pages\":\"377-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605513/pdf/nihms77039.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron glia biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1740925X08000173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X08000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactions of Sox10 and Egr2 in myelin gene regulation.
Myelination in the PNS is accompanied by a large induction of the myelin protein zero (Mpz) gene to produce the most abundant component in peripheral myelin. Analyses of knockout mice have shown that the EGR2/Krox20 and SOX10 transcription factors are required for Mpz expression. Our recent work has shown that the dominant EGR2 mutations associated with human peripheral neuropathies cause disruption of EGR2/SOX10 synergy at specific sites, including a conserved enhancer element in the first intron of the Mpz gene. Further investigation of Egr2/Sox10 interactions reveals that activation of the Mpz intron element by Egr2 requires both Sox10-binding sites. In addition, both Egr1 and Egr3 cooperate with Sox10 to activate this element, which indicates that this capacity is conserved among Egr family members. Finally, a conserved composite structure of Egr2/Sox10-binding sites in the genes encoding Mpz, myelin-associated glycoprotein and myelin basic protein genes was used to screen for similar modules in other myelin genes, revealing a potential regulatory element in the periaxin gene. Overall, these results elucidate a working model for developmental regulation of Mpz expression, several facets of which extend to regulation of other peripheral myelin genes.