原核生物“种”的起源:嗜盐古生菌的分类。

Priya DasSarma, Shiladitya DasSarma
{"title":"原核生物“种”的起源:嗜盐古生菌的分类。","authors":"Priya DasSarma,&nbsp;Shiladitya DasSarma","doi":"10.1186/1746-1448-4-5","DOIUrl":null,"url":null,"abstract":"<p><p>The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community.</p>","PeriodicalId":87359,"journal":{"name":"Saline systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1746-1448-4-5","citationCount":"27","resultStr":"{\"title\":\"On the origin of prokaryotic \\\"species\\\": the taxonomy of halophilic Archaea.\",\"authors\":\"Priya DasSarma,&nbsp;Shiladitya DasSarma\",\"doi\":\"10.1186/1746-1448-4-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community.</p>\",\"PeriodicalId\":87359,\"journal\":{\"name\":\"Saline systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1746-1448-4-5\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saline systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1746-1448-4-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saline systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1746-1448-4-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

二项命名法(属和种)的分类系统在近三百年前由林奈首次推广,主要用于植物和动物的分类。他的主要目标是给出标签,以确保生物学家能够就正在研究的生物体达成一致。150年后,达尔文认为“物种”一词是一种方便用语,与“多样性”并无本质区别。在现代,对世界生态位的探索以及基因组学的进步使已命名物种的数量增加到180多万种,其中包括许多微生物。然而,即使这个庞大的数字也不包括90%以上尚未培养或分类的微生物。在命名微生物界的新分离物时,挑战仍然是缺乏一个普遍持有和均匀适用的物种标准。根据形成可育后代的能力来定义物种并不适用于微生物,70%的DNA-DNA杂交在许多已完成的基因组序列中显得相当粗糙。常用的系统发育标记16S rRNA很难进行分类,因为它不能提供用于分类的多种特征或表型。使用大多数标准,通常可以在属水平上找到一致,但种水平的区分是有问题的。这些观察结果证实了物种概念在应用于原核生物时是有缺陷的。为了解决这个问题,我们研究了极端嗜盐古菌的分类学,其中的目,科,甚至属的名称已经过时,某些物种的命名和重命名在科学界引起了很大的混乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the origin of prokaryotic "species": the taxonomy of halophilic Archaea.

On the origin of prokaryotic "species": the taxonomy of halophilic Archaea.

The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信