Matthew G Erickson, Andrew T Ulijasz, Bernard Weisblum
{"title":"影响细菌双组分信号转导反应调节蛋白与同源启动子DNA相互作用的化合物筛选。","authors":"Matthew G Erickson, Andrew T Ulijasz, Bernard Weisblum","doi":"10.1007/978-1-59745-246-5_17","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial signal transduction systems can be used as drug targets. The signal transduction targets fall into two groups--sensor kinases and response regulators. Previously reported studies describe hits that were thought to inactivate sensor kinases but on closer examination were found to act elsewhere instead; a possible reason for this is that full-length sensor kinases are integral membrane proteins whose activity might reflect interaction with the cell membrane or with membrane components. We describe a model system that instead is based on the interaction between a test compound and a response regulator in a homogeneous phase reaction. In this system, response regulator-DNA complex formation and its inhibition by a test compound are measured by fluorescence polarization. The model system should be readily adaptable to drug discovery based on other bacterial two-component s transduction systems.</p>","PeriodicalId":18460,"journal":{"name":"Methods in molecular medicine","volume":"142 ","pages":"215-22"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-1-59745-246-5_17","citationCount":"1","resultStr":"{\"title\":\"Screening for compounds that affect the interaction between bacterial two-component signal transduction response regulator protein and cognate promoter DNA.\",\"authors\":\"Matthew G Erickson, Andrew T Ulijasz, Bernard Weisblum\",\"doi\":\"10.1007/978-1-59745-246-5_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial signal transduction systems can be used as drug targets. The signal transduction targets fall into two groups--sensor kinases and response regulators. Previously reported studies describe hits that were thought to inactivate sensor kinases but on closer examination were found to act elsewhere instead; a possible reason for this is that full-length sensor kinases are integral membrane proteins whose activity might reflect interaction with the cell membrane or with membrane components. We describe a model system that instead is based on the interaction between a test compound and a response regulator in a homogeneous phase reaction. In this system, response regulator-DNA complex formation and its inhibition by a test compound are measured by fluorescence polarization. The model system should be readily adaptable to drug discovery based on other bacterial two-component s transduction systems.</p>\",\"PeriodicalId\":18460,\"journal\":{\"name\":\"Methods in molecular medicine\",\"volume\":\"142 \",\"pages\":\"215-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-1-59745-246-5_17\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-59745-246-5_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-59745-246-5_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Screening for compounds that affect the interaction between bacterial two-component signal transduction response regulator protein and cognate promoter DNA.
Bacterial signal transduction systems can be used as drug targets. The signal transduction targets fall into two groups--sensor kinases and response regulators. Previously reported studies describe hits that were thought to inactivate sensor kinases but on closer examination were found to act elsewhere instead; a possible reason for this is that full-length sensor kinases are integral membrane proteins whose activity might reflect interaction with the cell membrane or with membrane components. We describe a model system that instead is based on the interaction between a test compound and a response regulator in a homogeneous phase reaction. In this system, response regulator-DNA complex formation and its inhibition by a test compound are measured by fluorescence polarization. The model system should be readily adaptable to drug discovery based on other bacterial two-component s transduction systems.