{"title":"[大体解剖实验室计算流体动力学中甲醛浓度与模拟温度和风速的垂直分布]。","authors":"Masaaki Takayanagi, Toshio Fujita, Tsunebumi Mikuni, Makoto Sakai, Youichi Ishikawa, Kunio Murakami, Akihiko Kimura, Sachiko Kakuta, Fumi Sato","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cadavers for gross anatomy laboratories are typically embalmed in formaldehyde. Thus, medical students and instructors are exposed to formaldehyde vapors emitted from cadavers during dissection. In an attempt to improve the dissection environment, we examined indoor formaldehyde concentrations in a gross anatomy laboratory. Air samples were taken from 20, 110, 160, and 230 cm above the floor between dissection beds to represent areas near the floor, in the breathing zone of sitting students, in the breathing zone of standing students, and near the ceiling, respectively. Formaldehyde vapors were thoroughly diffused from the floor to the ceiling, suggesting that medical students are exposed to similar concentrations of formaldehyde based on distance from the floor. Computational fluid dynamics showed that cadavers are warmed by overhead fluorescent lights and the body heat of anatomy students, and indicated that the diffusion of formaldehyde vapors is increased by lighting and the body temperature of students. Computational fluid dynamics showed that gentle convection from anatomy students and cadavers carry formaldehyde vapors upward; downward flow near admission ports diffuse formaldehyde vapors from the ceiling to the floor in the anatomy laboratory.</p>","PeriodicalId":76066,"journal":{"name":"Kaibogaku zasshi. Journal of anatomy","volume":"83 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Vertical distribution of formaldehyde concentration and simulated temperature and wind velocity from computational fluid dynamics in a gross anatomy laboratory].\",\"authors\":\"Masaaki Takayanagi, Toshio Fujita, Tsunebumi Mikuni, Makoto Sakai, Youichi Ishikawa, Kunio Murakami, Akihiko Kimura, Sachiko Kakuta, Fumi Sato\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadavers for gross anatomy laboratories are typically embalmed in formaldehyde. Thus, medical students and instructors are exposed to formaldehyde vapors emitted from cadavers during dissection. In an attempt to improve the dissection environment, we examined indoor formaldehyde concentrations in a gross anatomy laboratory. Air samples were taken from 20, 110, 160, and 230 cm above the floor between dissection beds to represent areas near the floor, in the breathing zone of sitting students, in the breathing zone of standing students, and near the ceiling, respectively. Formaldehyde vapors were thoroughly diffused from the floor to the ceiling, suggesting that medical students are exposed to similar concentrations of formaldehyde based on distance from the floor. Computational fluid dynamics showed that cadavers are warmed by overhead fluorescent lights and the body heat of anatomy students, and indicated that the diffusion of formaldehyde vapors is increased by lighting and the body temperature of students. Computational fluid dynamics showed that gentle convection from anatomy students and cadavers carry formaldehyde vapors upward; downward flow near admission ports diffuse formaldehyde vapors from the ceiling to the floor in the anatomy laboratory.</p>\",\"PeriodicalId\":76066,\"journal\":{\"name\":\"Kaibogaku zasshi. Journal of anatomy\",\"volume\":\"83 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaibogaku zasshi. Journal of anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaibogaku zasshi. Journal of anatomy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Vertical distribution of formaldehyde concentration and simulated temperature and wind velocity from computational fluid dynamics in a gross anatomy laboratory].
Cadavers for gross anatomy laboratories are typically embalmed in formaldehyde. Thus, medical students and instructors are exposed to formaldehyde vapors emitted from cadavers during dissection. In an attempt to improve the dissection environment, we examined indoor formaldehyde concentrations in a gross anatomy laboratory. Air samples were taken from 20, 110, 160, and 230 cm above the floor between dissection beds to represent areas near the floor, in the breathing zone of sitting students, in the breathing zone of standing students, and near the ceiling, respectively. Formaldehyde vapors were thoroughly diffused from the floor to the ceiling, suggesting that medical students are exposed to similar concentrations of formaldehyde based on distance from the floor. Computational fluid dynamics showed that cadavers are warmed by overhead fluorescent lights and the body heat of anatomy students, and indicated that the diffusion of formaldehyde vapors is increased by lighting and the body temperature of students. Computational fluid dynamics showed that gentle convection from anatomy students and cadavers carry formaldehyde vapors upward; downward flow near admission ports diffuse formaldehyde vapors from the ceiling to the floor in the anatomy laboratory.