{"title":"唾液腺衍生祖细胞克隆猪的研究。","authors":"Mayuko Kurome, Ryo Tomii, Satoshi Ueno, Katsumi Hiruma, Shirou Matsumoto, Kenji Okumura, Kimitoshi Nakamura, Mitsuhito Matsumoto, Yuji Kaji, Fumio Endo, Hiroshi Nagashima","doi":"10.1089/clo.2007.0074","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve tissue stem cell transplantation in clinical settings, translational studies using large animal models are essential to confirm the efficacy and safety of therapy. Therefore, with the ultimate objective of constructing a porcine model of stem cell transplantation in the present study we attempted to clone pigs using porcine salivary gland-derived progenitor cells (pSGPs) as nuclear donors. Normal chromosomal compositions of pSGPs were maintained after five to eight passages (73%, 41 of 56). Cell cycle was efficiently synchronized in G(0)/G(1) phase after 2 days of serum-starved culture (79%). Characteristics of multipotent pSGPs, that is, CD49f and intracellular laminin staining patterns, were unchanged after serum-starved culture. Developmental rate of blastocysts from embryos reconstructed using pSGPs as nuclear donors was significantly higher when compared to embryos reconstructed using fetal fibroblasts (27.7%, 38 of 137 vs. 12.8%, 17 of 138; p < 0.05). When a total of 615 reconstructed embryos were transplanted into four recipient gilts, all gilts became pregnant and produced 12 piglets. These findings suggest that pSGPs represent appropriate donor cells for porcine somatic cell nuclear transfer.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"10 2","pages":"277-86"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2007.0074","citationCount":"19","resultStr":"{\"title\":\"Production of cloned pigs from salivary gland-derived progenitor cells.\",\"authors\":\"Mayuko Kurome, Ryo Tomii, Satoshi Ueno, Katsumi Hiruma, Shirou Matsumoto, Kenji Okumura, Kimitoshi Nakamura, Mitsuhito Matsumoto, Yuji Kaji, Fumio Endo, Hiroshi Nagashima\",\"doi\":\"10.1089/clo.2007.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve tissue stem cell transplantation in clinical settings, translational studies using large animal models are essential to confirm the efficacy and safety of therapy. Therefore, with the ultimate objective of constructing a porcine model of stem cell transplantation in the present study we attempted to clone pigs using porcine salivary gland-derived progenitor cells (pSGPs) as nuclear donors. Normal chromosomal compositions of pSGPs were maintained after five to eight passages (73%, 41 of 56). Cell cycle was efficiently synchronized in G(0)/G(1) phase after 2 days of serum-starved culture (79%). Characteristics of multipotent pSGPs, that is, CD49f and intracellular laminin staining patterns, were unchanged after serum-starved culture. Developmental rate of blastocysts from embryos reconstructed using pSGPs as nuclear donors was significantly higher when compared to embryos reconstructed using fetal fibroblasts (27.7%, 38 of 137 vs. 12.8%, 17 of 138; p < 0.05). When a total of 615 reconstructed embryos were transplanted into four recipient gilts, all gilts became pregnant and produced 12 piglets. These findings suggest that pSGPs represent appropriate donor cells for porcine somatic cell nuclear transfer.</p>\",\"PeriodicalId\":49217,\"journal\":{\"name\":\"Cloning Stem Cells\",\"volume\":\"10 2\",\"pages\":\"277-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/clo.2007.0074\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cloning Stem Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/clo.2007.0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cloning Stem Cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/clo.2007.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of cloned pigs from salivary gland-derived progenitor cells.
To achieve tissue stem cell transplantation in clinical settings, translational studies using large animal models are essential to confirm the efficacy and safety of therapy. Therefore, with the ultimate objective of constructing a porcine model of stem cell transplantation in the present study we attempted to clone pigs using porcine salivary gland-derived progenitor cells (pSGPs) as nuclear donors. Normal chromosomal compositions of pSGPs were maintained after five to eight passages (73%, 41 of 56). Cell cycle was efficiently synchronized in G(0)/G(1) phase after 2 days of serum-starved culture (79%). Characteristics of multipotent pSGPs, that is, CD49f and intracellular laminin staining patterns, were unchanged after serum-starved culture. Developmental rate of blastocysts from embryos reconstructed using pSGPs as nuclear donors was significantly higher when compared to embryos reconstructed using fetal fibroblasts (27.7%, 38 of 137 vs. 12.8%, 17 of 138; p < 0.05). When a total of 615 reconstructed embryos were transplanted into four recipient gilts, all gilts became pregnant and produced 12 piglets. These findings suggest that pSGPs represent appropriate donor cells for porcine somatic cell nuclear transfer.