{"title":"水稻RPR1上游片段对苯丙唑的响应性分析。","authors":"Xiang-Hui Zhao, Jin-Xiao Yang, Jiong Gao, Qian Zhou, Ben-Ke Kuai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>RPR1 (rice probenazole-responsive) is a rice gene, the expression of which is responsive to probenazole (PBZ), a synthetic compound that may act as a plant defense activator. It has been shown that RPR1 gene may be involved in disease resistance responses. In this study, a series of amplified fragments from the rice RPR1 promoter region, including 2,416 bp, 1,574 bp, 819 bp, 568 bp and 208 bp fragments upstream to the ATG translation start site, were prepared and linked to the coding region of beta-glucuronidase (GUS) gene. Analysis of GUS gene transient expression in rice calli demonstrated that the 568 bp fragment was sufficient for probenazole responsiveness. Analysis of GUS gene stable expression in Arabidopsis thaliana indicated that the 2,416 bp and 1,574 bp fragments drove GUS expression only in shoot apical meristem and petiole. Identification of these PBZ-responsive fragments provides a basis on which PBZ-inducible gene regulatory systems can be constructed for experimental analysis of gene expression and for field application.</p>","PeriodicalId":64030,"journal":{"name":"植物生理与分子生物学学报","volume":"33 6","pages":"524-30"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of probenazole-responsiveness of rice RPR1 upstream fragments.\",\"authors\":\"Xiang-Hui Zhao, Jin-Xiao Yang, Jiong Gao, Qian Zhou, Ben-Ke Kuai\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RPR1 (rice probenazole-responsive) is a rice gene, the expression of which is responsive to probenazole (PBZ), a synthetic compound that may act as a plant defense activator. It has been shown that RPR1 gene may be involved in disease resistance responses. In this study, a series of amplified fragments from the rice RPR1 promoter region, including 2,416 bp, 1,574 bp, 819 bp, 568 bp and 208 bp fragments upstream to the ATG translation start site, were prepared and linked to the coding region of beta-glucuronidase (GUS) gene. Analysis of GUS gene transient expression in rice calli demonstrated that the 568 bp fragment was sufficient for probenazole responsiveness. Analysis of GUS gene stable expression in Arabidopsis thaliana indicated that the 2,416 bp and 1,574 bp fragments drove GUS expression only in shoot apical meristem and petiole. Identification of these PBZ-responsive fragments provides a basis on which PBZ-inducible gene regulatory systems can be constructed for experimental analysis of gene expression and for field application.</p>\",\"PeriodicalId\":64030,\"journal\":{\"name\":\"植物生理与分子生物学学报\",\"volume\":\"33 6\",\"pages\":\"524-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"植物生理与分子生物学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"植物生理与分子生物学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of probenazole-responsiveness of rice RPR1 upstream fragments.
RPR1 (rice probenazole-responsive) is a rice gene, the expression of which is responsive to probenazole (PBZ), a synthetic compound that may act as a plant defense activator. It has been shown that RPR1 gene may be involved in disease resistance responses. In this study, a series of amplified fragments from the rice RPR1 promoter region, including 2,416 bp, 1,574 bp, 819 bp, 568 bp and 208 bp fragments upstream to the ATG translation start site, were prepared and linked to the coding region of beta-glucuronidase (GUS) gene. Analysis of GUS gene transient expression in rice calli demonstrated that the 568 bp fragment was sufficient for probenazole responsiveness. Analysis of GUS gene stable expression in Arabidopsis thaliana indicated that the 2,416 bp and 1,574 bp fragments drove GUS expression only in shoot apical meristem and petiole. Identification of these PBZ-responsive fragments provides a basis on which PBZ-inducible gene regulatory systems can be constructed for experimental analysis of gene expression and for field application.