子空间共识核分类发现癌症分子模式。

Xiaoxu Han
{"title":"子空间共识核分类发现癌症分子模式。","authors":"Xiaoxu Han","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel hierarchical clustering (CKHC) method in the subspace generated by the PG-NMF. It integrates convergence-soundness parts-based learning, subspace and kernel space clustering in the microarray and proteomics data classification. We first integrated subspace methods and kernel methods by following our framework of the input space, subspace and kernel space clustering. We demonstrate more effective classification results from our algorithm by comparison with those of the classic NMF, sparse-NMF classifications and supervised classifications (KNN and SVM) for the four benchmark cancer datasets. Our algorithm can generate a family of classification algorithms in machine learning by selecting different transforms to generate subspaces and different kernel clustering algorithms to cluster data.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":" ","pages":"55-65"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer molecular pattern discovery by subspace consensus kernel classification.\",\"authors\":\"Xiaoxu Han\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel hierarchical clustering (CKHC) method in the subspace generated by the PG-NMF. It integrates convergence-soundness parts-based learning, subspace and kernel space clustering in the microarray and proteomics data classification. We first integrated subspace methods and kernel methods by following our framework of the input space, subspace and kernel space clustering. We demonstrate more effective classification results from our algorithm by comparison with those of the classic NMF, sparse-NMF classifications and supervised classifications (KNN and SVM) for the four benchmark cancer datasets. Our algorithm can generate a family of classification algorithms in machine learning by selecting different transforms to generate subspaces and different kernel clustering algorithms to cluster data.</p>\",\"PeriodicalId\":72665,\"journal\":{\"name\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"55-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤分子模式的高效发现是分子诊断的重要内容。基因/蛋白表达数据的特点对传统的无监督分类算法提出了挑战。本文提出了一种基于投影梯度非负矩阵分解(PG-NMF)的子空间一致核聚类算法。该算法是在PG-NMF生成的子空间中采用一致核层次聚类(CKHC)方法。它集成了基于收敛性部件的学习,子空间和核空间聚类的微阵列和蛋白质组学数据分类。我们首先按照输入空间、子空间和核空间聚类的框架,将子空间方法和核空间方法结合起来。通过与经典NMF分类、稀疏NMF分类和监督分类(KNN和SVM)在四种基准癌症数据集上的分类结果进行比较,我们证明了该算法的分类结果更有效。我们的算法通过选择不同的变换来生成子空间,选择不同的核聚类算法来聚类数据,从而在机器学习中生成一系列分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer molecular pattern discovery by subspace consensus kernel classification.

Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel hierarchical clustering (CKHC) method in the subspace generated by the PG-NMF. It integrates convergence-soundness parts-based learning, subspace and kernel space clustering in the microarray and proteomics data classification. We first integrated subspace methods and kernel methods by following our framework of the input space, subspace and kernel space clustering. We demonstrate more effective classification results from our algorithm by comparison with those of the classic NMF, sparse-NMF classifications and supervised classifications (KNN and SVM) for the four benchmark cancer datasets. Our algorithm can generate a family of classification algorithms in machine learning by selecting different transforms to generate subspaces and different kernel clustering algorithms to cluster data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信