{"title":"可穿戴式、无袖带、基于ppg的血压监测仪,带有新颖的高度传感器。","authors":"Phillip A Shaltis, Andrew Reisner, H Harry Asada","doi":"10.1109/IEMBS.2006.260027","DOIUrl":null,"url":null,"abstract":"<p><p>A truly wearable non-invasive blood pressure (NIBP) sensor--light-weight, compact, unobstrusive, and essentially unnoticeable to the patient--could revolutionize healthcare delivered beyond the traditional walls of medical facilities, offering new ways to care for patients in their everyday surroundings. This paper presents results from our work towards the development of a self-contained, wearable blood pressure sensor. A PPG-based approach to blood pressure monitoring is presented. The design enables significant miniaturization of traditional oscillometric devices without the need for occlusive circumferential pressures. It will be shown how natural raising and lowering of the arm replaces the need for bulky actuators. Additionally, a dual-accelerometer height sensor that is tetherless is proposed and supported by experimental results.</p>","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":" ","pages":"908-11"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IEMBS.2006.260027","citationCount":"73","resultStr":"{\"title\":\"Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor.\",\"authors\":\"Phillip A Shaltis, Andrew Reisner, H Harry Asada\",\"doi\":\"10.1109/IEMBS.2006.260027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A truly wearable non-invasive blood pressure (NIBP) sensor--light-weight, compact, unobstrusive, and essentially unnoticeable to the patient--could revolutionize healthcare delivered beyond the traditional walls of medical facilities, offering new ways to care for patients in their everyday surroundings. This paper presents results from our work towards the development of a self-contained, wearable blood pressure sensor. A PPG-based approach to blood pressure monitoring is presented. The design enables significant miniaturization of traditional oscillometric devices without the need for occlusive circumferential pressures. It will be shown how natural raising and lowering of the arm replaces the need for bulky actuators. Additionally, a dual-accelerometer height sensor that is tetherless is proposed and supported by experimental results.</p>\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\" \",\"pages\":\"908-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IEMBS.2006.260027\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2006.260027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2006.260027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor.
A truly wearable non-invasive blood pressure (NIBP) sensor--light-weight, compact, unobstrusive, and essentially unnoticeable to the patient--could revolutionize healthcare delivered beyond the traditional walls of medical facilities, offering new ways to care for patients in their everyday surroundings. This paper presents results from our work towards the development of a self-contained, wearable blood pressure sensor. A PPG-based approach to blood pressure monitoring is presented. The design enables significant miniaturization of traditional oscillometric devices without the need for occlusive circumferential pressures. It will be shown how natural raising and lowering of the arm replaces the need for bulky actuators. Additionally, a dual-accelerometer height sensor that is tetherless is proposed and supported by experimental results.