Justin P Phillips, Panayiotis A Kyriacou, Kuriakose J George, John V Priestley, Richard M Langford
{"title":"一种用于中枢神经系统组织的光纤光体积描记系统。","authors":"Justin P Phillips, Panayiotis A Kyriacou, Kuriakose J George, John V Priestley, Richard M Langford","doi":"10.1109/IEMBS.2006.259690","DOIUrl":null,"url":null,"abstract":"<p><p>A new system for measuring the oxygen saturation of blood within tissue has been developed, for a number of potential patient monitoring applications. This proof of concept project aims to address the unmet need of real-time measurement of oxygen saturation in the central nervous system (CNS) for patients recovering from neurosurgery or trauma, by developing a fiber optic signal acquisition system for internal placement through small apertures. The development and testing of a two-wavelength optical fiber reflectance photoplethysmography (PPG) system is described. It was found that good quality red and near-infrared PPG signals could be consistently obtained from the human fingertip (n=6) and rat spinal cord (n=6) using the fiber optic probe. These findings justify further development and clinical evaluation of this fiber optic system.</p>","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":" ","pages":"803-6"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IEMBS.2006.259690","citationCount":"11","resultStr":"{\"title\":\"An optical fiber photoplethysmographic system for central nervous system tissue.\",\"authors\":\"Justin P Phillips, Panayiotis A Kyriacou, Kuriakose J George, John V Priestley, Richard M Langford\",\"doi\":\"10.1109/IEMBS.2006.259690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new system for measuring the oxygen saturation of blood within tissue has been developed, for a number of potential patient monitoring applications. This proof of concept project aims to address the unmet need of real-time measurement of oxygen saturation in the central nervous system (CNS) for patients recovering from neurosurgery or trauma, by developing a fiber optic signal acquisition system for internal placement through small apertures. The development and testing of a two-wavelength optical fiber reflectance photoplethysmography (PPG) system is described. It was found that good quality red and near-infrared PPG signals could be consistently obtained from the human fingertip (n=6) and rat spinal cord (n=6) using the fiber optic probe. These findings justify further development and clinical evaluation of this fiber optic system.</p>\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\" \",\"pages\":\"803-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IEMBS.2006.259690\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2006.259690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2006.259690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An optical fiber photoplethysmographic system for central nervous system tissue.
A new system for measuring the oxygen saturation of blood within tissue has been developed, for a number of potential patient monitoring applications. This proof of concept project aims to address the unmet need of real-time measurement of oxygen saturation in the central nervous system (CNS) for patients recovering from neurosurgery or trauma, by developing a fiber optic signal acquisition system for internal placement through small apertures. The development and testing of a two-wavelength optical fiber reflectance photoplethysmography (PPG) system is described. It was found that good quality red and near-infrared PPG signals could be consistently obtained from the human fingertip (n=6) and rat spinal cord (n=6) using the fiber optic probe. These findings justify further development and clinical evaluation of this fiber optic system.